Math, asked by rashmichristena, 9 months ago

factozise 8xcube 729y cube​

Answers

Answered by hitenkaim21
1

Answer:

Step by Step Solution:

More Icon

STEP 1 :  Equation at the end of step 1

 (8 • (x3)) -  36y3

STEP  2 :  Equation at the end of step 2 :

 23x3 -  36y3

STEP3 :  Trying to factor as a Difference of Cubes

3.1      Factoring:  8x3-729y3  

Theory : A difference of two perfect cubes,  a3 - b3 can be factored into

             (a-b) • (a2 +ab +b2)

Proof :  (a-b)•(a2+ab+b2) =

           a3+a2b+ab2-ba2-b2a-b3 =

           a3+(a2b-ba2)+(ab2-b2a)-b3 =

           a3+0+0+b3 =

           a3+b3

Check :  8  is the cube of  2  

Check :  729  is the cube of   9  

Check :  x3 is the cube of   x1

Check :  y3 is the cube of   y1

Factorization is :

            (2x - 9y)  •  (4x2 + 18xy + 81y2)  

Trying to factor a multi variable polynomial :

3.2    Factoring    4x2 + 18xy + 81y2  

Try to factor this multi-variable trinomial using trial and error  

Factorization fails

Final result :

 (2x - 9y) • (4x2 + 18xy + 81y2)

Step-by-step explanation:

please mark me as brainliest

Answered by Anonymous
27

\green{\bold{\underline{ ☆ UPSC-ASPIRANT ☆} }}

\red{\bold{\underline{\underline{QUESTION:-}}}}

factozise 8xcube 729y cube

\huge\bigstar\huge\tt\underline\red{ᴀɴsᴡᴇʀ }\bigstar

------>>>>Here is your answer<<<<--------

➪ {(8x)}^{3}  +  {(729y)}^{3}  =  {(2x)}^{3}  +  {(9y)}^{2}

➪ {(2x)}^{3}  +  {(9y)}^{3}

we use this formula to solve:-

➪ {a}^{3}  +  {b}^{3}  =  (a + b)( {a}^{2}   - ab +  {b}^{2} )

➪ {(2x)}^{3}  +  {(9y)}^{3}  = (2x + 9y)( {(2x)}^{2}  +  {(9y)}^{2}  -( 2x)(9y))

HOPE IT HELPS YOU..

_____________________

Thankyou:)

Similar questions