Math, asked by Anonymous, 7 months ago

FAST ANSWER ME.......​

Attachments:

Answers

Answered by QueenImposter
4

 \bf \huge \underline{ \orange{correct \: question : }}

Given secΘ = 10/9 , calculate all other trigonometric ratios.

\bf \huge \underline{ \orange{answer :  }}

 \sf{sec  \: \theta =  \frac{hyptenuse}{adjecent}  =  \frac{10}{9} }   \\  \\

 \bf{we \: will \: find \:the \: oppsite \: side }

 \to \tt{according \: to \: the \: attached \: diagram } \\

AB² + BC² = AC²

➜ AB² = AC² - BC²

➜ AB² = 10² - 9²

➜ AB² = 100 - 81

➜ AB² = 27

AB = √27

 \sf \small{all \: other \: trigonometric \: ratios \:are \: as \: follows :  }

 \to \tt{sin \theta =  \frac{opposite}{hypotenuse}  =  \frac{ \sqrt{27} }{10} } \\  \\  \to \tt{cos \theta =  \frac{adjecent}{hypotenuse}  =  \frac{9}{10} } \\  \\  \to \tt{tan \theta =   \frac{opposite}{adjecent} =  \frac{ \sqrt{27} }{9} } \\  \\ \to \tt{cot \theta =  \frac{adjecent}{opposite} =  \frac{9}{ \sqrt{27} }  } \\  \\  \to \tt{cosec \theta =  \frac{hypotenuse}{opposite}  =  \frac{10}{ \sqrt{27} } }

Attachments:
Answered by Anonymous
1

\bf\huge \underline{\orange{correct\: question:}}

correctquestion:

Given secΘ = 10/9 , calculate all other trigonometric ratios.

\bf\huge \underline{\orange{answer:}}

answer:

\begin{lgathered}\sf{sec \: \theta = \frac{hyptenuse}{adjecent} = \frac{10}{9} } \\ \\\end{lgathered}</p><p></p><p>secθ= </p><p>adjecent</p><p>hyptenuse</p><p>	</p><p> = </p><p>9</p><p>10</p><p>	</p><p> </p><p>	</p><p> </p><p></p><p>[tex]\bf{we \: will \: find \:the \: oppsite \: side}wewillfindtheoppsiteside

\begin{lgathered}\to \tt{according \: to \: the \: attached \: diagram} \\\end{lgathered}

→accordingtotheattacheddiagram

AB² + BC² = AC²

➜ AB² = AC² - BC²

➜ AB² = 10² - 9²

➜ AB² = 100 - 81

➜ AB² = 27

∴ AB = √27

\sf\small{all \: other \: trigonometric \: ratios \:are \: as \: follows:}allothertrigonometricratiosareasfollows:

[tex]\begin{lgathered}\to \tt{sin\theta = \frac{opposite}{hypotenuse} = \frac{\sqrt{27}}{10}} \\ \\ \to \tt{cos\theta=\frac{adjecent}{hypotenuse} =\frac{9}{10}} \\ \\ \to\tt{tan\theta = \frac{opposite}{adjecent} = \frac{\sqrt{27}}{9}} \\ \\ \to \tt{cot\theta = \frac{adjecent}{opposite} = \frac{9}{\sqrt{27}}} \\ \\ \to \tt{cosec \theta = \frac{hypotenuse}{opposite} = \frac{10}{\sqrt{27}}}\end{lgathered}

→sinθ=

hypotenuse

opposite

=

10

27

→cosθ=

hypotenuse

adjecent

=

10

9

→tanθ=

adjecent

opposite

=

9

27

→cotθ=

opposite

adjecent

=

27

9

→cosecθ=

opposite

hypotenuse

=

27

10

Attachments:
Similar questions