Math, asked by dside0987, 10 months ago

Fast friends tell me answer:If alpha and beta are the zeroes of 2x2-9x+10,form the polynomial whose zeroes are 1/alpha and 1/beta

Answers

Answered by BrainlyPopularman
28

Question :

• If alpha and beta are the zeroes of 2x² - 9x + 10 = 0 , form the polynomial whose zeroes are 1/alpha and 1/beta.

ANSWER :

GIVEN :

A quadratic equation 2x² - 9x + 10 = 0 which have two roots  \:  \alpha \: and  \:  \beta \:

TO FIND :

Another quadratic equation whose zeroes are  \:   \:  \dfrac{1}{ \alpha } \: and  \:   \dfrac{1}{\beta} \:  \:

SOLUTION :–

  \\ \:   \implies \:  { \bold{2 {x}^{2} - 9x + 10 = 0 \:  }} \:  \: \\

• Splitting Middle term –

  \\ \:   \implies \:  { \bold{2 {x}^{2} - 5x  - 4x+ 10 = 0 \:  }} \:  \: \\

  \\ \:   \implies \:  { \bold{x(2 {x} - 5)  - 2(2x -  5) = 0 \:  }} \:  \: \\

  \\ \:   \implies \:  { \bold{(x - 2)(2 {x} - 5)  = 0 \:  }} \:  \: \\

  \\ \:   \implies \:  { \bold{x  =  2 \: \: , \:   \:  \dfrac{5}{2}  \:  }} \:  \: \\

• Hence –

  \\ \:   \implies \:  { \bold{ \alpha  =  2 \: \: , \:   \:  \beta   =   \dfrac{5}{2}  \:  }} \:  \: \\

• Now required equation –

  \\ \:   \longrightarrow \:  { \bold{ sum \:  \: of \:  \: roots =  \dfrac{1}{ \alpha }  +  \dfrac{ 1}{ \beta }   }} \:  \: \\

  \\ \:   \implies \:  { \bold{ sum \:  \: of \:  \: roots =  \dfrac{1}{ 2}  +  \dfrac{ 1}{ ( \frac{5}{2} ) }   }} \:  \: \\

  \\ \:   \implies \:  { \bold{ sum \:  \: of \:  \: roots =  \dfrac{1}{ 2}  +  \dfrac{ 2}{ 5}   }} \:  \: \\

  \\ \:   \implies \:  { \bold{ sum \:  \: of \:  \: roots =  \dfrac{5 + 4}{ 2 \times 5}    }} \:  \: \\

  \\ \:   \implies \:  { \bold{ sum \:  \: of \:  \: roots =  \dfrac{9}{ 10}    }} \:  \: \\

  \\ \:   \longrightarrow \:  { \bold{ Product \:  \: of \:  \: roots =  \dfrac{1}{ \alpha }   \times   \dfrac{ 1}{ \beta }   }} \:  \: \\

  \\ \:   \implies\:  { \bold{ Product \:  \: of \:  \: roots =  \dfrac{1}{ \alpha  \times  \beta }      }} \:  \: \\

  \\ \:   \implies\:  { \bold{ Product \:  \: of \:  \: roots =  \dfrac{1}{ (2) (  \frac{5}{2} ) }      }} \:  \: \\

  \\ \:   \implies\:  { \bold{ Product \:  \: of \:  \: roots =  \dfrac{1}{ 5  }      }} \:  \: \\

• We know that a quadratic equation –

  \\ \:   \longrightarrow\:  \large { \boxed{ \bold{  {x}^{2}  - (sum \:  \: of \:  \: roots)x + (product \:  \: of \:  \:  roots) = 0 }}} \:  \: \\

• So that , new equation –

  \\ \:   \implies \:   {{ \bold{  {x}^{2}  - ( \frac{9}{10} )x + ( \frac{1}{5} ) = 0 }}} \:  \: \\

  \\ \:   \longrightarrow\:  \large { \boxed{ \bold{ 10 {x}^{2}  - 9x + 2 = 0 }}} \:  \: \\


RvChaudharY50: Perfect. ❤️
Answered by sethrollins13
21

✯✯ QUESTION ✯✯

If alpha and beta are the zeroes of 2x²-9x+10,form the polynomial whose zeroes are 1/alpha and 1/beta..

━━━━━━━━━━━━━━━━━━━━

✰✰ ANSWER ✰✰

\implies\tt{{2x}^{2}-9x+10=0}

By Splitting the Middle Term : -

\implies\tt{{2x}^{2}-(4x+5x)+10}

\implies\tt{{2x}^{2}-4x-5x+10}

\implies\tt{x(2x-5)-2(2x-5)}

\implies\tt{(x-2)(2x-5)}

  • x = 2
  • x = 5/2

So , 2 and 5/2 are Zeroes of Polynominal 2x² - 9x + 10 ..

_______________________

Sum Of Zeroes : -

\implies\tt{\dfrac{1}{\alpha}+\dfrac{1}{\beta}}

\implies\tt{\dfrac{1}{2}+\dfrac{1}{(\frac{5}{2})}}

\implies\tt{\dfrac{1}{2}+\dfrac{2}{5}}

\implies\tt{\dfrac{5+4}{10}}

{\implies\tt\dfrac{9}{10}}

Product Of Zeroes : -

\implies\tt{\dfrac{1}{\alpha}\times{\dfrac{1}{\beta}}}

\implies\tt{\dfrac{1}{\alpha\times{\beta}}}

\implies\tt{\dfrac{1}{(2) (\frac{5}{2} )}}

\implies\tt{\dfrac{1}{5}}

Now , Using Formula : -

\implies\tt{{x}^{2}-(\alpha+\beta)x+(\alpha\beta)=0}

Putting Values : -

\implies\tt{{x}^{2}-\dfrac{9}{10}x+\dfrac{1}{5}=0}

\implies\tt{\large{\boxed{\bold{\bold{\red{\sf{{10x}^{2}-9x+2=0}}}}}}}

Similar questions