Fig. 6.13, lines AB and CD intersect at O. If AOC +BOE = 70° and BOD = 40°, find BOE and reflex COE...???
Answers
Answer:
∠AOC + ∠BOE = 70°
∠AOC + ∠COE + ∠BOE = 180°
[ linear pair ]
So,
if ∠AOC + ∠BOE = 70°
so,
→ 70° + ∠COE = 180°
→ ∠COE = 180 - 70
→ ∠COE = 110°
.
∠BOD = ∠AOC [ Vertically Opposite Angles ]
.
Now,
→ ∠AOC + ∠COE + ∠BOE = 180°
→ 40° + 110° + ∠BOE = 180°
→ 150° + ∠BOE = 180°
→ ∠BOE = 180° - 150°
→ ∠BOE = 30°
.
∠BOD + ∠DOA = 180° [Liner Pair]
→ 40° + ∠DOA = 180°
→ ∠DOA = 180° - 40°
→ ∠DOA = 140°
Hence,
reflex angle ( ∠COE ) = ∠AOC + ∠DOE + ∠BOD + ∠BOE
reflex angle ( ∠COE ) = 40° + 140° + 40° + 30°
reflex angle ( ∠COE ) = 250°
pls follow me
Answer:
Given
•‹AOC + ‹BOE = 70°
•‹BOD = 40°
‹BOD = ‹AOC (Vertically opposite angles)
→ ‹AOC = 40°
‹AOC + ‹BOE = 70°
→ 40° + ‹BOE = 70°
→ ‹BOE = 70° - 40°
→ ‹BOE = 30°
‹AOC + ‹BOE + ‹COE = 180° (Linear angles)
→ 40° + 30° + ‹COE = 180°
→ 70° + ‹COE = 180°
→ ‹COE = 180° - 70°
→ ‹COE = 110°
Reflex COE = 360° - 110°
→ 250°
Therefore
‹BOE = 30°
Reflex ‹COE = 250°
Hope this helps you...
Borahae!