Fig. 7.22
8. In right triangle ABC, right angled at C. Mis
the mid-point of hypotenuse ABC is joined
to M and produced to a point D such that
DM = CM. Point D is joined to point B
(see Fig. 7.23). Show that:
( A AMC = A BMD
(i) 2 DBC is a right angle.
(iii) A DBC = A ACB
Fig. 7.23
(iv) CM =
AB
Answers
given is not in photo .You write given by self
Correct question:-
In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see Fig. 7.23). Show that:
(i) ΔAMC ≅ ΔBMD
(ii) ∠DBC is a right angle.
(iii) ΔDBC ≅ ΔACB
(iv) CM = 1/2 AB
______________________________________
It is given that M is the mid-point of the line segment AB, ∠C = 90°, and DM = CM
(i) Consider the triangles ΔAMC and ΔBMD:
AM = BM (Since M is the mid-point)
CM = DM
∠CMA = ∠DMB (They are vertically opposite angles)
So, by SAS congruency criterion, ΔAMC ≅ ΔBMD.
(ii) ∠ACM = ∠BDM (by CPCT)
∴ AC | | BD as alternate interior angles are equal.
Now, ∠ACB + ∠DBC = 180° (Since they are co-interiors angles)
⇒ 90° + ∠B = 180°
∴ ∠DBC = 90
(iii) In ΔDBC and ΔACB,
BC = CB (Common side)
∠ACB = ∠DBC ( right angles)
DB = AC (by CPCT)
So, ΔDBC ≅ ΔACB by SAS congruency.
(iv) DC = AB (Since ΔDBC ≅ ΔACB)
⇒ DM = CM = AM = BM (Since M the is mid-point)
So, DM + CM = BM + AM
Hence, CM + CM = AB
⇒ CM = (½) AB