Math, asked by nivedithakb916, 2 months ago

fig BO and CO are the bisector of angle ABC and angle ACO then find the angle BOC if angle A = 60 and angle ACB = 50°​

Attachments:

Answers

Answered by ooOPoisonousQueenOoo
0

Hope this answer helps you

Attachments:
Answered by kamalhajare543
5

Answer:

In △ABC,

 \sf \: ∠ABC+∠ACB+∠BAC=180

 \sf∠ABC+70+50=180

 \sf \: ∠ABC=60°

 \sf \: ∠OCB= \frac{1}{2} (180−∠ACB)

 \sf \: ∠OCB= \frac{1}{2} (180−50)

∠OCB=65 {}^{0}

 \sf \: ∠OBC= \frac{1}{2} (180−∠ABC)

 \sf \: ∠OBC= \frac{1}{2} (180−60)

 \sf \: ∠OBC=60°

  \sf \: In △OBC,

 \sf \: ∠OCB+∠OBC+∠BOC=180

 \sf \: 65+60+∠BOC=180

 \sf \: ∠BOC=180−125

∴\sf ∠BOC=55°

Hence ∠BOC=55°

Similar questions