Chemistry, asked by DevduttNair1431, 10 months ago

Figure (32.E1) shows a conductor of length l with a circular cross-section. The radius of the cross-section varies linearly from a to b. The resistivity of the material is rho. Assuming that b – a << l, find the resistance of the conductor.
Figure 32.E1

Answers

Answered by shilpa85475
4

Explanation:

Considering the small element length (dx) from distance x

Resistance of the small strip will be

Step 1:

dR=\frac{\rho dx}{\pi c^2}        ...(i)

\begin{aligned}&amp;\tan \theta=\frac{y-a}{x}=\frac{b-a}{L}\\&amp;\Rightarrow \frac{y-a}{x}=\frac{b-a}{L}\\&amp;\Rightarrow L(y-a)=x(b-a)\end{aligned}

\begin{aligned}&amp;\Rightarrow L y-L a=x b-x a\\&amp;\left.\Rightarrow L \frac{d y}{d x}-0=b-a \text { (differentiate with respect to  } x\right)\\&amp;\Rightarrow L \frac{d y}{d x}=b-a\end{aligned}

\Rightarrow \mathrm{dx}=\frac{\mathrm{Ldy}}{\mathrm{b}-\mathrm{a}}  ...........(ii)

Step 2:

Putting dx in equation (i) we get

\begin{array}{l}{\mathrm{d} \mathrm{R}=\frac{\mathrm{fLdy}}{\pi \mathrm{y}^{2}(\mathrm{b}-\mathrm{a})}} \\{\Rightarrow \mathrm{d} \mathrm{R}=\frac{\mathrm{fl}}{\pi(\mathrm{b}-\mathrm{a})} \frac{\mathrm{dy}}{\mathrm{y}^{2}}}\end{array}

\begin{aligned}&amp;\Rightarrow \int_{0}^{R} d R=\frac{f l}{\pi(b-a)} \int_{a}^{b} \frac{d y}{y^{2}}\\&amp;\Rightarrow R=\frac{f l}{\pi(b-a)} \frac{(b-a)}{a b}=\frac{f l}{\pi a b}\end{aligned}

Attachments:
Similar questions