Math, asked by anjaliajeesh0537, 19 days ago

figure PQ parallel to BC if PQ by BC is equal to 2 by 5 then AP by PB​

Answers

Answered by EmperorSoul
2

Given data:

In the figure \mathsf{PQ||BC} and \mathsf{\dfrac{PQ}{BC}=\dfrac{2}{5}}

To find:

\mathsf{\dfrac{AP}{PB}}

Step-by-step explanation:

From the given figure, we can say that \mathsf{\Delta APQ} and \mathsf{\Delta ABC} are like triangles.

Then \mathsf{\dfrac{AP}{AB}=\dfrac{PQ}{BC}}

\mathsf{\Rightarrow \dfrac{AP}{AP+PB}=\dfrac{2}{5}}

Since \mathsf{\dfrac{PQ}{BC}=\dfrac{2}{5}} and \mathsf{AB=AP+PB}

\mathsf{\Rightarrow \dfrac{AP+PB}{AP}=\dfrac{5}{2}}

\mathsf{\Rightarrow 1+\dfrac{PB}{AP}=\dfrac{5}{2}}

\mathsf{\Rightarrow \dfrac{PB}{AP}=\dfrac{5}{2}-1}

=\dfrac{5-2}{2} =\dfrac{3}{2}}

Answer: Option b) \mathsf{\dfrac{AP}{PB}=\dfrac{2}{3}}

Answered by llsnehall16
2

If AP:PB=1:2 then AP:AB will be 1:3.

So, in similar triangles, the ratio of the area of ΔABCΔAPQ=(31)2=91

Similar questions