Physics, asked by ashishtiwari1974, 10 months ago

Figure shows a cylindrical tube of length 30 cm which is partitioned by a tight-fitting separator. The separator is very weakly conducting and can freely slide along the tube. Ideal gases are filled in the two parts of the vessel. In the beginning, the temperatures in the parts A and B are 400 K and 100 K respectively. The separator slides to a momentary equilibrium position shown in the figure. Find the final equilibrium position of the separator, reached after a long time.
Figure

Answers

Answered by bhuvna789456
4

The final equilibrium position of the sector I = 10 cm

Explanation:

Let the chambers A and B starting pressure be P_A_1 and P_B_1 respectively.  

Let chambers A and B end pressure be P_A_2 and P_B_2 respectively.

Let the cross sectional area be A.  

\begin{aligned}&\mathrm{V}_{\mathrm{A} 1}=0.20 \mathrm{A}\\&T_{A 1}=400 K\end{aligned}

\begin{aligned}&\mathrm{V}_{\mathrm{B} 1}=0.1 \mathrm{A}\\&T_{51}=100 K\end{aligned}

Both side-pressures will be the same at first equilibrium.

P_A_1 = P_B_1

Let the final equilibrium temperature be T.

Then,

\frac{P_{A 1} V_{A 1}}{T_{A 1}}=\frac{P_{A 2} V_{A 2}}{T}

\frac{P_{A 1} 0.2 A}{400}=\frac{P_{A 2} V_{A 2}}{T}

P_{A 2}=\frac{P_{A 1} 0.2 A T}{400 V_{A 2}} ……….(1)

Chamber 2:

\begin{aligned}&\frac{P_{B 1} V_{B 1}}{T_{B 1}}=\frac{P_{B 2} V_{B N}}{T}\\&\frac{P_{B 1} 0.1 A}{100}=\frac{P_{B 2} V_{B 2}}{T}\end{aligned}

P_{B 2}=\frac{P_{B 1} 0.1 A T}{100 V_{B 2}}         ……….(2)

Pressures on both sides will be the same at second equilibrium.

P_{A 2}=P_{B 2}

\frac{P_{A 1} 0.2 A T}{400 V_{A 2}}=\frac{P_{B 1} 0.1 A T}{100 V_{B 2}}

\frac{P_{A 1}}{2 A T}=\frac{P_{B 1}}{V_{B 2}}             ..…… (3)

Now,

V_{B 2}+V_{A 2}=0.3 A

3 \mathrm{V}_{\mathrm{A} 2}=0.3 \mathrm{A}

\mathrm{V}_{\mathrm{A} 2}=0.1 \mathrm{A}

Let V_A_2 be I

l = 0.1 m

l = 10 cm

Therefore the final equilibrium position of the separator is 10 cm, reached after a long time \text  {Let V_{A 2} be lA_{2}}

Similar questions