Chemistry, asked by adesai8598, 1 year ago

Figure shows two parallel wires separated by a distance of 4.0 cm and carrying equal currents of 10 A along opposite directions. Find the magnitude of the magnetic field B at the points A1, A2, A3.
Figure

Answers

Answered by bhuvna789456
9

The magnitude of the magnetic field B at the points A1, A2, A3 are 0.67 \times 10^{-4} T , 2.67 \times 10^{-4} T , 2 \times 10^{-4} T and 1 \times 10^{-4} T

Explanation:

To find the magnitude of the magnetic field B at the points A1, A2, A3:

In case of  point A1,

Current magnitude in wires, I = 10 A

Separating point A1 from the left side of the wire, d = 2 cm

Point A1 separation from the wire on the right side, d‘ = 6 cm

In the figure  attached below,

Red and blue arrow denotes magnetic field direction due to wire marked as red and blue respectively.

P (marked red) refers to the wire that carries current in a plane that goes into the paper.  

Q (marked blue) denotes the wire that carries current in a paper-based plane.  

We can see that too from the figure

P A_{4}=Q A_{4}

\angle A_{4} A_{3} P=\angle A_{4} A_{3} Q=90^{\circ}

\angle A_{4} P A_{3}=\angle A_{4} Q A_{3}=45^{\circ}

\angle P A_{4} A_{3}=\angle Q A_{4} A_{3}=45^{\circ}

\angle P A_{4} Q=90^{\circ}

Due to current in wires, the magnetic field at A_1 is given by

B=\frac{\mu_{0} i}{2 \pi d}-\frac{\mu_{0} i}{2 \pi d^{\prime}} \ldots(1)

B=\frac{2 \times 10^{-7} \times 10}{2 \times 10^{-2}}-\frac{2 \times 10^{-7} \times 10}{6 \times 10^{-2}}      

B=\frac{10^{-7} \times 10}{10^{-2}}-\frac{10^{-7} \times 10}{3 \times 10^{-2}}  

B=\frac{10^{-7} \times 10}{10^{-2}}-\frac{10^{-7} \times 10}{3 \times 10^{-2}}      

B=10^{-5} \times 10-\frac{10^{-5} \times 10}{3}      

B=10^{-4}-\frac{10^{-4}}{3}    

 =\left(1-\frac{1}{3}\right) \times 10^{-4}

=\left(\frac{2}{3}\right) \times 10^{-4}      

=0.67 \times 10^{-4} T

Likewise we use eq. (1) to get the magnetic field at A_2.

B=\frac{2 \times 10^{-7} \times 10}{1 \times 10^{-2}}+\frac{2 \times 10^{-7} \times 10}{3 \times 10^{-2}}    

B=\frac{2 \times 10^{-7} \times 10}{10^{-2}}+\frac{2 \times 10^{-7} \times 10}{3 \times 10^{-2}}      

B=2 \times 10^{-4}+\frac{2 \times 10^{-4}}{3}

B=\left(2+\frac{2}{3}\right) 10^{-4}

B=\left(2+\frac{2}{3}\right) 10^{-4}

B=\left(\frac{6+2}{3}\right) 10^{-4}

   =\frac{8}{3} \times 10^{-4} T

   =2.67 \times 10^{-4} T

Magnetic field in case of  A_3:

B=\frac{2 \times 10^{-7} \times 10}{2 \times 10^{-2}}+\frac{2 \times 10^{-7} \times 10}{2 \times 10^{-2}}

B=\frac{10^{-7} \times 10}{10^{-2}}+\frac{10^{-7} \times 10}{10^{-2}}

   =2 \times 10^{-4} T

Magnetic field in case of  A_4:

Divide point A_4 from wire on the left side, d=\sqrt{2^{2}+2^{2}}=2 \sqrt{2} \mathrm{cm}

Divide point A_4 from wire on the right side, d^{\prime}=\sqrt{2^{2}+2^{2}}=2 \sqrt{2} \mathrm{cm}

In this way, the magnetic field at A_4 is supplied by the current in the wires

B=\sqrt{\left(\frac{2 \times 10^{-7} \times 10}{2 \sqrt{2} \times 10^{-2}}\right)^{2}+\left(\frac{2 \times 10^{-7} \times 10}{2 \sqrt{2} \times 10^{-2}}\right)^{2}}      

B=\sqrt{2\left(\frac{2 \times 10^{-7} \times 10}{2 \sqrt{2} \times 10^{-2}}\right)^{2}}      

B=\sqrt{2} \times \frac{2 \times 10^{-7} \times 10}{2 \sqrt{2} \times 10^{-2}}      

B=\frac{10^{-7} \times 10}{10^{-2}}        

B=10^{-5} \times 10        

   =1 \times 10^{-4} T

Attachments:
Similar questions