Computer Science, asked by prakashshiv783, 6 months ago

Fill
in
the
Blanks
:
can
be
used
to
insert
the
title
a
Header
option
is
available
under
the
.
insert
a
picture
in
a
header
,
click
on
the
..
Ada
1 Header & Footer
Headerब्लैंक कैन वी यूज टू इंसर्ट द टाइटल ऑफ द टॉप ऑफ ईच पेज विद आंसर ​

Answers

Answered by mahima757575
1

Answer:

Given:

Height of object, \sf h_oh

o

= 5 cm

Object distance, u = - 20 cm

Radius of curvature, R = 30 cm

Focal length, f = R/2 = 30/2 = 15 cm

To find:

Position of image, it's nature and size?

Solution:

\begin{gathered}\dag\;{\underline{\frak{Using\;mirror\;formula\;:}}}\\ \\\end{gathered}

Usingmirrorformula:

\begin{gathered}\star\;{\boxed{\sf{\purple{ \dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}}}}}\\ \\\end{gathered}

f

1

=

v

1

+

u

1

\begin{gathered}:\implies\sf \dfrac{1}{15} = \dfrac{1}{v} + \dfrac{1}{- 20}\\ \\\end{gathered}

:⟹

15

1

=

v

1

+

−20

1

\begin{gathered}:\implies\sf \dfrac{1}{v} = \dfrac{1}{15} - \dfrac{1}{ - 20}\\ \\\end{gathered}

:⟹

v

1

=

15

1

−20

1

\begin{gathered}:\implies\sf \dfrac{1}{v} = \dfrac{1}{15} + \dfrac{1}{20}\\ \\\end{gathered}

:⟹

v

1

=

15

1

+

20

1

\begin{gathered}:\implies\sf \dfrac{1}{v} = \dfrac{7}{60}\\ \\\end{gathered}

:⟹

v

1

=

60

7

\begin{gathered}:\implies\sf v = \dfrac{60}{7}\\ \\\end{gathered}

:⟹v=

7

60

\begin{gathered}:\implies{\boxed{\frak{\pink{v = 8.6\;cm}}}}\;\bigstar\\ \\\end{gathered}

:⟹

v=8.6cm

\begin{gathered}\therefore\;{\underline{\sf{Image\;distance\;is\; \bf{8.6\;cm}.}}}\\ \\\end{gathered}

Imagedistanceis8.6cm.

★ Nature of image:

Image is virtual and erect.

Image formed behind the mirror.

⠀━━━━━━━━━━━━━━━━━━━━━━━━━

Size of image,

\begin{gathered}\dag\;{\underline{\frak{Using\; Formula\;of\;magnification\;:}}}\\ \\\end{gathered}

UsingFormulaofmagnification:

\begin{gathered}\star\;{\boxed{\sf{\purple{ \dfrac{h_i}{h_o} = \dfrac{v}{u}}}}}\\ \\\end{gathered}

h

o

h

i

=

u

v

\begin{gathered}:\implies\sf \dfrac{h_i}{5} = \dfrac{8.6}{20}\\ \\\end{gathered}

:⟹

5

h

i

=

20

8.6

\begin{gathered}:\implies\sf h_i = \dfrac{8.6}{20} \times 5\\ \\\end{gathered}

:⟹h

i

=

20

8.6

×5

\begin{gathered}:\implies{\boxed{\frak{\pink{h_i = 2.2\;cm}}}}\;\bigstar\\ \\\end{gathered}

:⟹

h

i

=2.2cm

\therefore\;{\underline{\sf{Height\;or\;size\;of\;image\;is\; \bf{2.2\;cm}.}}}∴

Heightorsizeofimageis2.2cm.

Answered by akash98651
0

.........................................

Similar questions