Math, asked by m4747649, 2 months ago

fill in the blanks:

(sin x + sin 3x)/ (cos x + cos 3x) =_____​

Answers

Answered by amansharma264
7

EXPLANATION.

⇒ (sin x + sin 3x)/(cos x + cos 3x).

As we know that,

Formula of :

⇒ sin3x = 3sinx - 4sin³x.

⇒ cos3x = 4cos³x - 3cosx.

Using this formula in this equation, we get.

⇒ (sin x + 3sinx - 4sin³x)/(cos x + 4cos³x - 3cosx).

⇒ (4sinx - 4sin³x)/(4cos³x - 2cosx).

⇒ 4sinx(1 - sin²x)/2cosx(2cos²x - 1).

As we know that,

Formula of :

⇒ sin²x +  cos²x = 1.

⇒ cos²x = 1 - sin²x.

⇒ cos2x = 2cos²x - 1.

Using this formula in this equation, we get.

⇒ 4sinx(cos²x)/2cosx(cos2x).

⇒ 2sinx(cos²x)/cos x(cos2x).

⇒ 2sinx x cos(x) x cos(x)/cos x(cos2x).

⇒ 2sinx.cosx/cos2x.

As we know that,

Formula of :

⇒ sin2x = 2sinx.cosx.

Using this formula in the equation, we get.

⇒ sin2x/cos2x = tan2x.

                                                                                                                       

MORE INFORMATION.

Trigonometric ratios of multiple angles.

(1) = sin2θ = 2sinθ.cosθ.

(2) = cos2θ = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ = 1 - tan²θ/1 + tan²θ.

(3) = tan2θ = 2tanθ/1 - tan²θ.

(4) = sin3θ = 3sinθ - 4sin³θ.

(5) = cos3θ = 4cos³θ - 3cosθ.

(6) = tan3θ = 3tanθ - tan³θ/1 - 3tan²θ.

             

Answered by jaswasri2006
0

 \huge \tt  \frac{ \sin \: x }{ \cos \: x}  +  \frac{ \sin \: 3x}{ \cos \: 3x }  = tan \: 2x

Similar questions