Fin limx→0(cotx)(1−cos2x)x=2?
Answers
Answered by
0
Answer:
lim
x
→
0
(
cot
x
)
(
1
−
cos
2
x
)
x
=
2
Explanation:
We seek:
L
=
lim
x
→
0
(
cot
x
)
(
1
−
cos
2
x
)
x
=
lim
x
→
0
(
cos
x
sin
x
)
(
1
−
(
cos
2
x
−
sin
2
x
)
)
x
=
lim
x
→
0
(
cos
x
sin
x
)
(
1
−
(
1
−
sin
2
x
−
sin
2
x
)
)
x
=
lim
x
→
0
(
cos
x
sin
x
)
(
2
sin
2
x
)
x
=
lim
x
→
0
(
cos
x
)
2
sin
x
x
=
2
lim
x
→
0
(
cos
x
)
(
sin
x
x
)
=
2
{
lim
x
→
0
(
cos
x
)
}
{
lim
x
→
0
(
sin
x
x
)
}
=
2
⋅
1
⋅
1
=
2
lim
x
→
0
(
cot
x
)
(
1
−
cos
2
x
)
x
=
2
Explanation:
We seek:
L
=
lim
x
→
0
(
cot
x
)
(
1
−
cos
2
x
)
x
=
lim
x
→
0
(
cos
x
sin
x
)
(
1
−
(
cos
2
x
−
sin
2
x
)
)
x
=
lim
x
→
0
(
cos
x
sin
x
)
(
1
−
(
1
−
sin
2
x
−
sin
2
x
)
)
x
=
lim
x
→
0
(
cos
x
sin
x
)
(
2
sin
2
x
)
x
=
lim
x
→
0
(
cos
x
)
2
sin
x
x
=
2
lim
x
→
0
(
cos
x
)
(
sin
x
x
)
=
2
{
lim
x
→
0
(
cos
x
)
}
{
lim
x
→
0
(
sin
x
x
)
}
=
2
⋅
1
⋅
1
=
2
Similar questions