Math, asked by avinashambastha95, 3 months ago

Finch Derivative of log x by using
first prinupal Mithred​

Answers

Answered by mathdude500
4

\underline\blue{\bold{Given \:  Question :-  }}

  • Find the Derivative of log x by using first principal method

─━─━─━─━─━─━─━─━─━─━─━─━─━

\huge \orange{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─━

{ \boxed {\bf{Given}}}

  • f(x) = logx

{ \boxed {\bf{To  \: Find}}}

  • f'(x) using first principal.

{ \boxed {\bf{Formula  \: used :- }}}

\bf \:\lim_{x\rightarrow 0}  log(\dfrac{1 + x}{x} )  = 1

\bf \: log(a)  -  log(b)  =  log(\dfrac{a}{b} )

{ \boxed {\bf{Solution}}}

\bf \:Let \: f(x) =  log(x)

☆Change x to x + h

\bf\implies \:f(x + h) =  log(x + h)

☆By definition of First Principal of Differentiation,

\bf \:f'(x) = \lim_{h\rightarrow 0} \dfrac{f(x + h) - f(x)}{h}

\bf\implies \:f'(x) = \lim_{h\rightarrow 0} \dfrac{ log(x + h)  -  log(x) }{h}

\bf\implies \:f'(x) = \lim_{h\rightarrow 0} \dfrac{ log(\dfrac{x + h}{x} ) }{h}

\bf\implies \:f'(x) = \lim_{h\rightarrow 0} \dfrac{ log(1 + \dfrac{h}{x} ) }{h}

☆Multiply and divide by x the denominator, we get

\bf\implies \:f'(x) = \lim_{h\rightarrow 0} \dfrac{ log(1 + \dfrac{h}{x} ) }{\dfrac{h}{x} \times x }

\bf\implies \:f'(x) =\dfrac{1}{x}  \lim_{h\rightarrow 0} \dfrac{ log(1 + \dfrac{h}{x} ) }{\dfrac{h}{x} }

\bf\implies \:f'(x) = \dfrac{1}{x}  \times 1 = \dfrac{1}{x}

\large{\boxed{\boxed{\bf{Hence, \dfrac{d}{dx} logx = \dfrac{1}{x} }}}}

Similar questions