Math, asked by Bogame, 1 year ago

Find
1/√1 + 1/√2 + 1/√3 + .................. 1/√2000

Answers

Answered by BloomingBud
0

\frac{1}{ \sqrt{1} }  +  \frac{1}{ \sqrt{2} }  +  \frac{1}{ \sqrt{3} } + ..............  \frac{1}{ \sqrt{2000} }  \\  \\  \\  \frac{1}{ \sqrt{1} }  \times  \frac{ \sqrt{1} }{ \sqrt{1} }  +  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }  +  \frac{1}{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }  +  .............. \frac{1}{ \sqrt{2000} }  \times  \frac{ \sqrt{2000} }{ \sqrt{2000} }  \\  \\  \\  \frac{ \sqrt{1} }{1}  +  \frac{ \sqrt{2} }{2}  +   \frac{ \sqrt{3} }{3}  + ............ \frac{ \sqrt{2000} }{2000}

Bogame: you have to calculate it further
Answered by Anonymous
17

Step-by-step explanation:

ANSWER IS GIVEN BELOW

 \frac{1}{ \sqrt{1} }  +  \frac{1}{\sqrt{2} }........  \frac{1}{ \sqrt{2000} }   \\  \\ ratoinalizing \\  \\  \frac{1}{ \sqrt{1} }  \times  \frac{ \sqrt{1} }{ \sqrt{1} }  +  \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} } ..........  \frac{1}{ \sqrt{2000} }  \times  \frac{ \sqrt{2000} }{ \sqrt{2000} }  \\  \\  =  \frac{ \sqrt{1} }{1}  +  \frac{ \sqrt{2} }{2} ......... \frac{ \sqrt{2000} }{2000}

Mark as brainliest

Similar questions