Math, asked by dharak54, 7 months ago

find 1/ alpha+1/beta and alpha square +beta square from x^2+x-1/2​

Answers

Answered by deepakPGDV
2
  • 1/alpha+1/beta=2
  • alpha square+beta square=2

{ \bold{ \underline {\underline{Step \: by \: step \: solution:}}}}

{ \bold{ \underline {\underline{Given:}}}}

The equation is x^2+x-1/2

{ \bold{ \underline {\underline{To \: find:}}}}

  • 1/alpha + 1/beta
  • alpha square+beta square

{ \bold{ \underline {\underline{We \: know \: that:}}}}

  • The equation x^2+x-1/2, comparing with ax^2+bx+c.
  • Sum of the roots, alpha + beta = -b/a= -1/1 = -1
  • Product of the roots, (alpha)(beta)=c/a =-(1/2)/1 = -1/2

{ \bold{ \underline {\underline{Solution:}}}}

1st one,

 \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{ \alpha  +  \beta }{ \alpha  \beta }  \\ =  \frac{ - 1}{  -  \frac{1}{2} }  = 2 \\  \implies \boxed{ \frac{1}{ \alpha }  +   {\frac{1}{ \beta } } = 2}

2nd one,

 { (\alpha  +  \beta) }^{2}  =  { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta  \\  { \alpha }^{2}  +  { \beta }^{2} =  {( \alpha  +  \beta )}^{2}   - 2 \alpha  \beta  \\  =  { (- 1)}^{2}  - 2( -  \frac{1}{2} ) \\  = 1 +  \frac{2}{2 }  \\  = 1 + 1 = 2 \\   \boxed{{( \alpha  +  \beta )}^{2}  = 2}

Hope it helps✌️

Answered by SonicTheHero
0

2 and 3 is the answer

Hope it helps you

Similar questions