Find:-
1)angle B
2.angle EDC
3.abgleADE
4.angleAED
5.angle DEC
6.angle DEC
7.ANGLE ACB
Attachments:
Answers
Answered by
1
SOLUTION...
IF POSSIBLE PLEASE TRY TO MAKE ME BRAINLIST
Attachments:
Answered by
0
Answer:
Step-by-step explanation:
In Δ DBC,
< CDB + < DBC + < DCB = 180°
100° + < DBC + 25° = 180°
< DBC = 180° - 125°
< DBC = 55° ; < B = 55°
< DCB = < CDE = 25° ( Vertically Opposite Angles )
< CDE = 25°
< CDB + < CDE + < EDA = 180° ( Linear Pair Theorem)
100° + 25° + < EDA = 180°
< EDA = 180° - 125°
< EDA = 55°
In ΔADE ,
< DAE + < ADE + < AED = 180°
55° + 55° + < AED = 180°
< AED = 180° - 110°
< AED = 70°
< AED + < DEC = 180° ( Linear Pair Theorem)
70° + < DEC = 180°
< DEC = 110°
In Δ DEC ,
< EDC + < DEC + < ECD = 180°
25° + 110° + < ECD = 180°
< ECD = 180° - 135°
- < ECD = 45°
< ACB = < ECD + < DCB
< ACB = 45° + 25°
< ACB = 70°
Similar questions
English,
5 months ago
English,
5 months ago
Computer Science,
5 months ago
English,
10 months ago
Political Science,
10 months ago
Math,
1 year ago
Math,
1 year ago