Math, asked by sciencemagnet, 6 months ago

find 1- sin2theta / 1 + cos theta​

Attachments:

Answers

Answered by amansharma264
4

EXPLANATION.

 \sf \:  \implies \: 1 - \dfrac{ \sin {}^{2} ( \theta) }{1 +  \cos( \theta) }   \\  \\ \sf \:  \implies \: 1 -  \frac{1 -  \cos {}^{2} ( \theta) }{1 +  \cos( \theta) }  \\  \\ \sf \:  \implies \:  \frac{1 +  \cos( \theta) - (1 -  \cos {}^{2} ( \theta))  }{1 +  \cos( \theta) }  \\  \\ \sf \:  \implies \:  \frac{1 +  \cos( \theta)  - 1 +  \cos {}^{2} ( \theta) }{1 +  \cos( \theta)  }

\sf \:  \implies \:  \dfrac{ \cos( \theta) +  \cos {}^{2} ( \theta) }{1 +  \cos( \theta) }  \\  \\ \sf \:  \implies \:  \frac{ \cos( \theta)(1 +  \cos( \theta))  }{1 +  \cos( \theta) }  =  \cos( \theta)

More information.

Sin ø = P/h = perpendicular/hypotenuse.

cos ø = b/h = base/hypotenuse.

tan ø = p/b = perpendicular/base.

csc ø = h/p = hypotenuse/perpendicular.

sec ø = h/b = hypotenuse/base.

cot ø = b/p = base/perpendicular.

Sin²ø + cos²ø = 1.

tan²ø + 1 = sec²ø.

1 + cot²ø = csc²ø.

Similar questions