Math, asked by khushikhandare, 3 months ago

Find

−1 using column transformations :

i) A = [

5 3

3 −2

]​

Answers

Answered by amitnrw
1

Given :    A=\left[\begin{array}{ccc}5&3\\3&-2\end{array}\right]

To find : A⁻¹ using column transformations

Solution:

AI  = A

\left[\begin{array}{ccc}5&3\\3&-2\end{array}\right] \left[\begin{array}{ccc}1&0\\0&1\end{array}\right]  = \left[\begin{array}{ccc}5&3\\3&-2\end{array}\right]

AA⁻¹  = I

C₂ → 5C₂ - 3C₁

\left[\begin{array}{ccc}5&3\\3&-2\end{array}\right] \left[\begin{array}{ccc}1&-3\\0&5\end{array}\right]  = \left[\begin{array}{ccc}5&0\\3&-19\end{array}\right]

C₁ → 19C₁ +3C₂

\left[\begin{array}{ccc}5&3\\3&-2\end{array}\right] \left[\begin{array}{ccc}10&-3\\15&5\end{array}\right]  = \left[\begin{array}{ccc}95&0\\0&-19\end{array}\right]

C₁ →  C₁/95

\left[\begin{array}{ccc}5&3\\3&-2\end{array}\right] \left[\begin{array}{ccc}\frac{2}{19} &-3\\ \frac{3}{19} &5\end{array}\right]  = \left[\begin{array}{ccc}1&0\\0&-19\end{array}\right]

C₂ →  C₂/-19

\left[\begin{array}{ccc}5&3\\3&-2\end{array}\right] \left[\begin{array}{ccc}\frac{2}{19} & \frac{3}{19}\\ \frac{3}{19} & -\frac{5}{19}\end{array}\right]  = \left[\begin{array}{ccc}1&0\\0&1\end{array}\right]

AA⁻¹  = I

A^{-1}=\left[\begin{array}{ccc}\frac{2}{19} & \frac{3}{19}\\ \frac{3}{19} & -\frac{5}{19}\end{array}\right]

Learn More:

If a=matrix 2,3,5,-2 write a inverse in terms of a - Brainly.in

brainly.in/question/3109606

If A= matrix [ 2 1 1 1 0 1 0 2 -1],find the inverse of A using elementary ...

brainly.in/question/17274361

Similar questions