Math, asked by shobha1211983, 1 year ago

find 1/x+1/y+1/z? with the given conditions.​

Attachments:

Answers

Answered by Anonymous
15

Question :-

11^x = 3^y = 33^z, then (1/x) + (1/y) + (1/z)

Answer :-

Value of (1/x) + (1/y) + (1/z) is 2/z

Explanation :-

11^x = 3^y = 33^z

Let 11^x = 3^y = 33^z = k

Finding the value of 11 in terms of k

 \mathsf{11^x = k} \\  \\

 \mathsf{ \implies11 =  \sqrt[x]{k} } \\  \\

 \mathsf{ \implies11 = k^{ \dfrac{1}{x} }  } \\  \\

 \boxed{ \bf \because  \sqrt[m]{a} =  a^{ \dfrac{1}{m} }    } \\  \\

Finding the value 3 in terms of k

 \mathsf{3^y = k} \\  \\

 \mathsf{ \implies 3=  \sqrt[y]{k} } \\  \\

 \mathsf{ \implies 3 = k^{ \dfrac{1}{y} }  } \\  \\

 \boxed{ \bf \because  \sqrt[m]{a} =  a^{ \dfrac{1}{m} }    } \\  \\

Finding the value of 33 in terms of k

 \mathsf{33^z = k} \\  \\

 \mathsf{ \implies 33=  \sqrt[z]{k} } \\  \\

 \mathsf{ \implies 33 = k^{ \dfrac{1}{z} }  } \\  \\

 \boxed{ \bf \because  \sqrt[m]{a} =  a^{ \dfrac{1}{m} }    } \\  \\

Finding the value of (1/x) + (1/y) + (1/z)

We know that

 \bf{33 = 11 \times 3} \\  \\

Substituting the value of 33, 11 and 3 in the above equation

 \mathsf{ \implies k^{ \dfrac{1}{z} }  = k^{ \dfrac{1}{x} }  \times k^{ \dfrac{1}{y}}  } \\  \\

 \mathsf{ \implies k^{ \dfrac{1}{z} }  = k^{ \dfrac{1}{x} +  \dfrac{1}{y}  }  } \\  \\

 \boxed{ \bf \because a^m \times  a^n =  a^{m+n}    } \\  \\

 \mathsf{ \implies  \dfrac{1}{z}  = \dfrac{1}{x} +  \dfrac{1}{y}  }  \\  \\

 \boxed{ \bf \because \ if \  a^m  = a^n \ then \ m  = n } \\  \\

 \mathsf{ \implies  0 = \dfrac{1}{x} +   \dfrac{1}{y}  -   \dfrac{1}{z}  }  \\  \\

Adding 2/z on both sides

 \mathsf{ \implies   \dfrac{2}{z}  = \dfrac{1}{x} +   \dfrac{1}{y}  -   \dfrac{1}{z} +  \dfrac{2}{z}   }  \\  \\

 \mathsf{ \implies   \dfrac{2}{z}  = \dfrac{1}{x} +   \dfrac{1}{y} + \dfrac{1}{z}   }  \\  \\

 \mathsf{ \implies \dfrac{1}{x} +   \dfrac{1}{y}   +  \dfrac{1}{z}    =  \dfrac{2}{z} }  \\  \\

∴ the value of (1/x) + (1/y) + (1/z) is 2/z

Answered by DhanyaDA
11

Given

 {11}^{x}  =  {3}^{y}  =  {33}^{z}

To find

 \dfrac{1}{x}  +  \dfrac{1}{y}  +  \dfrac{1}{z}

Explanation

let us assume that

 =  >  {11}^{x}  =  {3}^{y}  =  {33}^{z}  = t

Now equating each and every term to t

 =  >  {11}^{x}  = t

 =  > 11 =  {t}^{ \dfrac{1}{x} } ........(1)

 =  >  {3}^{y }  = t

 =  > 3 =  {t}^{ \dfrac{1}{y} } .........(2)

 =  >  {33}^{z}  = t

 =  > 33 =  {t}^{ \dfrac{1}{z} } .........(3)

we know that

3×11=33

Now substitute the values from (1) ,(2),(3)

then

 {t}^{ \dfrac{1}{y} }   \times  {t}^{ \dfrac{1}{x} }  =  {t}^{ \dfrac{1}{z} }

\underline{\sf a^m×a^n=a^m+n}

 =  >  {t}^{ \dfrac{1}{x}  +  \dfrac{1}{y} }  =  {t}^{ \dfrac{1}{z} }

Now as the bases are equal powers can be equated

 \dfrac{1}{x}  +  \dfrac{1}{y}  =  \dfrac{1}{z} ..........(4)

now consider

 \dfrac{1}{x}  +  \dfrac{1}{y}  +  \dfrac{1}{z}

from eq (4)

 =  >  \dfrac{1}{z}  +  \dfrac{1}{z}

 =  >  \dfrac{1 + 1}{z}  =  \dfrac{2}{z}

\boxed {\sf \dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{2}{z}}

Similar questions