Math, asked by clove0706, 4 months ago

Find 16^(2x+3)/4^(x) =32.

Answers

Answered by Asterinn
3

Given :

 \sf \dfrac{ {16}^{(2x + 3)} }{ {4}^{x} } = 32

To find :

  • The value of X

Solution :

 \sf  \implies\dfrac{ {16}^{(2x + 3)} }{ {4}^{x} } = 32

We know that :-

  • 2⁴= 16
  • 2²=4
  • 2⁵= 32

\sf  \implies\dfrac{ { ({2}^{4}) }^{(2x + 3)} }{ { ({2}^{2} )}^{x} } =  {2}^{5}

We know that :-

 \sf  {({a}^{n} )}^{m}  =  {a}^{mn}

Therefore :-

\sf  \implies\dfrac{ { {2} }^{(8x + 12)} }{ { {2}}^{2x} } =  {2}^{5}

We know that :-

\sf  \dfrac{ {{a}^{n} }}{ {{a}^{m} }}   =  {a}^{n - m}

\sf  \implies{ { {2} }^{(8x + 12 - 2x)} } =  {2}^{5}

\sf  \implies{ { {2} }^{(6x + 12 )} } =  {2}^{5}

Therefore now :-

\sf  \implies{6x + 12 } = {5}

\sf  \implies{6x  } = {5}  - 12

\sf  \implies{6x  } =   -7

\sf  \implies{x  } =  \dfrac{ - 7}{6}

Answer : -7/6

Similar questions