Math, asked by naveenpatel639, 10 months ago

Find 16th term of the A.P.given as -5, -5/2, 0, 5/2…………….


please answer it ​

Answers

Answered by Anonymous
2

\LARGE\star\boxed{\mathfrak\pink{\underline{\underline{Answer}}}}\star\\\\\\

\large\textbf{$\dfrac{65}{2}$}\\\\\\

\LARGE\star\star\boxed{\mathbb\red{\underline{\underline{GIVEN}}}}\star\star\\\\\\

\large\odot\:\:\textbf{A.P.\:=\:-5\:,\:$\dfrac{-5}{2}$\:,\:0\:,\:$\dfrac{5}{2}$\:,\:....}\\\\

\large\odot\:\:\textbf{$a_1\:or\:a\:=\:-5$}\\\\

\large\odot\:\:\textbf{d=$\dfrac{-5}{2}\:-\:(-5)$}\\

\large\longrightarrow\textbf{d=$\dfrac{5}{2}$}\\\\\\

\LARGE\star\star\star\boxed{\mathbb\green{\underline{\underline{TO\:FIND}}}}\star\star\star\\\\\\

\large\odot\:\:\textbf{$16_{th}$\:term\:of\:A.P.}\\\\\\

\LARGE\star\star\star\boxed{\mathcal\red{\underline{\underline{Explanation}}}}\star\star\star\\\\\\

\Large\boxed{\texttt{Formula\:=\:a\:+\:(n-1)d}}\\\\\\

\Large\texttt{where }\\\\\\

\large\odot\:\:\textsf{a is the first term }\\\\

\large\odot\:\:\textsf{n is the number of term}\\

\large\textsf{which we have to find}\\\\

\large\odot\:\:\textsf{d is the difference}\\

\large\textsf{between two terms}\\\\

\large\Longrightarrow\textsf{$T_n$ = -5+(16-1)$\dfrac{5}{2}$}\\

\large\Longrightarrow\textsf{$T_n$ = -5+15$\dfrac{5}{2}$}\\

\large\Longrightarrow\textsf{$T_n$ = -5+$\dfrac{75}{2}$}\\

\large\Longrightarrow\textsf{$T_n$ = $\dfrac{-10+75}{2}$}\\

\large\Longrightarrow\textsf{$T_n$ = $\dfrac{65}{2}$ }\\\\

\Large\therefore\textbf{The\:Answer\:is\:$\dfrac{65}{2}$}\\\\\\

▬▬▬▬▬ஜ۩۞۩ஜ▬▬▬▬▬▬

Answered by kaursimranjot46
0

hope this will help you and marks it as brainlist plzzzzzzzzz

Attachments:
Similar questions