Math, asked by pavi3166, 11 months ago

Find 2/7×-4/7-5/9-4/7×2/5​

Answers

Answered by AbhijithPrakash
15

Answer:

\dfrac{2}{7}\left(-\dfrac{4}{7}\right)-\dfrac{5}{9}\left(-\dfrac{4}{7}\right)\dfrac{2}{5}=-\dfrac{16}{441}\quad \left(\mathrm{Decimal:\quad }\:-0.03628\dots \right)

Step-By-Step-Explanation:

\dfrac{2}{7}\left(-\dfrac{4}{7}\right)-\dfrac{5}{9}\left(-\dfrac{4}{7}\right)\dfrac{2}{5}

\mathrm{Remove\:parentheses}:\quad \left(-a\right)=-a,\:-\left(-a\right)=a

=-\dfrac{2}{7}\times \dfrac{4}{7}+\dfrac{5}{9}\times \dfrac{4}{7}\times \dfrac{2}{5}

\dfrac{2}{7}\times \dfrac{4}{7}

\mathrm{Multiply\:fractions}:\quad \dfrac{a}{b}\times \dfrac{c}{d}=\dfrac{a\:\times \:c}{b\:\times \:d}

=\dfrac{2\times \:4}{7\times \:7}

\mathrm{Multiply\:the\:numbers:}\:2\times \:4=8

=\dfrac{8}{7\times \:7}

\mathrm{Multiply\:the\:numbers:}\:7\times \:7=49

=\dfrac{8}{49}

\dfrac{5}{9}\times \dfrac{4}{7}\times \dfrac{2}{5}

\mathrm{Multiply\:fractions}:\quad \dfrac{a}{b}\times \dfrac{c}{d}=\dfrac{a\:\times \:c}{b\:\times \:d}

=\dfrac{5\times \:4\times \:2}{9\times \:7\times \:5}

\mathrm{Cancel\:the\:common\:factor:}\:5

=\dfrac{4\times \:2}{9\times \:7}

\mathrm{Multiply\:the\:numbers:}\:4\times \:2=8

=\dfrac{8}{9\times \:7}

\mathrm{Multiply\:the\:numbers:}\:9\times \:7=63

=\dfrac{8}{63}

=-\dfrac{8}{49}+\dfrac{8}{63}

\mathrm{Least\:Common\:Multiplier\:of\:}49,\:63

49,\:63

Least\:Common\:Multiplier\:\left(LCM\right)

\mathrm{The\:LCM\:of\:}a,\:b\mathrm{\:is\:the\:smallest\:positive\:number\:that\:is\:divisible\:by\:both\:}a\mathrm{\:and\:}b

\mathrm{Prime\:factorization\:of\:}49:\quad 7\times \:7

\mathrm{Prime\:factorization\:of\:}63:\quad 3\times \:3\times \:7

\mathrm{Multiply\:each\:factor\:the\:greatest\:number\:of\:times\:it\:occurs\:in\:either\:}49\mathrm{\:or\:}63

=7\times \:7\times \:3\times \:3

\mathrm{Multiply\:the\:numbers:}\:7\times \:7\times \:3\times \:3=441

=441

Adjust\:Fractions\:based\:on\:the\:LCM

=-\dfrac{72}{441}+\dfrac{56}{441}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \dfrac{a}{c}\pm \dfrac{b}{c}=\dfrac{a\pm \:b}{c}

=\dfrac{-72+56}{441}

\mathrm{Add/Subtract\:the\:numbers:}\:-72+56=-16

=\dfrac{-16}{441}

\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{-a}{b}=-\dfrac{a}{b}

=-\dfrac{16}{441}

Similar questions