Math, asked by fidhavs, 5 months ago

find 2 complex numbers satisfying the equation z^2-2z+4=0​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{Equation\;is\;z^2-2z+4=0}

\underline{\textbf{To find:}}

\textsf{Two complex numbers satisfying the equaion}

\mathsf{z^2-2z+4=0}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{z^2-2z+4=0}

\textsf{This can be written as}

\mathsf{(z^2-2z+1)+3=0}

\mathsf{(z^2-2z+1)=-3}

\mathsf{(z-1)^2=-3}

\mathsf{(z-1)^2=3i^2}

\textsf{Taking square root on bothsides, we get}

\mathsf{z-1=\pm\,i\sqrt3}

\implies\mathsf{z=1\pm\,i\sqrt3}

\therefore\textbf{Two complex numbers satisfying the equation is}

\;\bf\,1+i\sqrt3\;\;and\;\;1-i\sqrt3

Answered by vinod04jangid
0

Answer:

Two complex roots of z^{2} - 2z + 4 =0 are z = 1 ± i\sqrt{3}

Step-by-step explanation:

Given:- z^{2} - 2z + 4 =0

To Find:- Two complex numbers satisfying the above equation.

Solution:-  z^{2} - 2z + 4 =0

The above equation can also be written as:

z^{2} - 2z + 1 + 3 =0

z^{2} - 2z + 1 = -3

(z-1)^{2} = 3i^{2}

Now, taking square root on both sides

\sqrt{(z-1)^{2} } = \sqrt{3i^{2} }

z-1 = i\sqrt{3}

z = 1 ± i\sqrt{3}

∴ Two complex roots of z^{2} - 2z + 4 =0 are z = 1 ± i\sqrt{3}

#SPJ2

Similar questions