find (2 log6 +6log2)/(4log2+log27-log9)
Answers
Answered by
31
hi friend,
firstly 2 log6 +6log2
→log6²+log2^6
→log36+log 64
→log 36×64
→log2304
now, 4log2+log27-log9
→log 16+log27-log9
→log 16(27)/9
→log 48
now, (2 log6 +6log2)/(4log2+log27-log9)
→log2304/log48
→log 48²/log48
→2
I hope this will help u :)
firstly 2 log6 +6log2
→log6²+log2^6
→log36+log 64
→log 36×64
→log2304
now, 4log2+log27-log9
→log 16+log27-log9
→log 16(27)/9
→log 48
now, (2 log6 +6log2)/(4log2+log27-log9)
→log2304/log48
→log 48²/log48
→2
I hope this will help u :)
dhathri123:
tq:?
Answered by
6
Given : 2 log6 +6log2)/(4log2+log27-log9)
To Find : Value
Solution:
2 log6 +6log2)/(4log2+log27-log9)
=2 log(3x2) +6log2)/(4log2+log27-log9)
using log(ab) = log a + logb
log a - log b = log (a/b)
=( 2log3 + 2log2+ 6log2 )/(4log2 + log (27/9))
= (2log3 + 8log2)/(4log2 + log 3)
Take 2 common in numerator
= 2(log 3 + 4log2) /(4log2 + log 3)
re arrange terms in numerator
= 2(4log2 + log 3)/(4log2 + log 3)
cancel 4log2 + log 3 common terms
= 2
2 log6 +6log2)/(4log2+log27-log9) = 2
Learn More:
2 + log x is equals to log 45 minus log 2 + log 16 - 2log3 - Brainly.in
https://brainly.in/question/2575911
Similar questions