Math, asked by yadavji1234, 1 year ago

Find 2 numbers whose sum is 23 and product is 120.

Answers

Answered by chaitanyaraj
2

Step-by-step explanation:

Let the numbers be x and y

x+y=23

xy=120

 {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\  {x}^{2}  +  {y}^{2}  =  {(x + y)}^{2}  - 2xy

 {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy \\   {(x - y)}^{2}  =  {(x + y)}^{2}  - 2xy - 2xy \\  {(x - y)}^{2} = {(x + y)}^{2} - 4xy \\ {(x - y)}^{2} =  {23}^{2}  - 4 \times 120 = 529 - 480 \\  {(x - y)}^{2}  = 49 \\ x - y = 7

x+y=23.(i)

x-y=7.(ii)

(i)+(ii)

2x=30

x=15

y=23-x=23-15=8

<font color=red><marquee>The answer is 15 and 8</marquee></font>

<font color=silver><marquee behavior=alternate>PLEASE MARK BRAINLIEST</marquee></font>

<font color=blue><marquee  behavior=opposite>HOPE IT HELPS✌✌</marquee></font>

Similar questions