Math, asked by aaa3148, 11 months ago

find 2 one answer.plz solve this answer with step by step.plz.​

Attachments:

Answers

Answered by Anonymous
15

Solution :-

As given :-

 \dfrac{\sqrt{5} + \sqrt{3}}{2\sqrt{5} - 3\sqrt{3}}  = a - b\sqrt{15}

Now via Rationalising Denominator :-

 \dfrac{\sqrt{5} + \sqrt{3}}{2\sqrt{5} - 3\sqrt{3}} \times \dfrac{2\sqrt{5} + 3\sqrt{3}}{2\sqrt{5} + 3\sqrt{3}}

 = \dfrac{(\sqrt{5} + \sqrt{3})(2\sqrt{5} + 3\sqrt{3})}{(2\sqrt{5})^2 - (3\sqrt{3})^2 }

 = \dfrac{ 2(5) + 3\sqrt{15} + 2 \sqrt{15} + 3(3)}{4(5) - 9(3)}

 = \dfrac{ 10 + 5\sqrt{15} + 9}{20 - 27}

 = \dfrac{19 + 5\sqrt{15}}{-7}

 = \dfrac{(-19)}{7} - \dfrac{5\sqrt{15}}{7}

Now as

  \dfrac{(-19)}{7} - \dfrac{5\sqrt{15}}{7}  = a - b\sqrt{15}

By comparing both sides

\huge{\boxed{\sf{ a = \dfrac{-19}{7}}}}

 \huge{\boxed{\sf{ b = \dfrac{5}{7}}}}

Answered by oOBADGIRLOo
8

As given :-

\dfrac{\sqrt{5} + \sqrt{3}}{2\sqrt{5} - 3\sqrt{3}} = a - b\sqrt{15}

Now via Rationalising

Denominator :-

\dfrac{\sqrt{5} + \sqrt{3}}{2\sqrt{5} - 3\sqrt{3}} \times \dfrac{2\sqrt{5} + 3\sqrt{3}}{2\sqrt{5} + 3\sqrt{3}}

= \dfrac{(\sqrt{5} + \sqrt{3})(2\sqrt{5} + 3\sqrt{3})}{(2\sqrt{5})^2 - (3\sqrt{3})^2 }

= \dfrac{ 2(5) + 3\sqrt{15} + 2 \sqrt{15} + 3(3)}{4(5) - 9(3)}

= \dfrac{ 10 + 5\sqrt{15} + 9}{20 - 27}

=\dfrac{19 + 5\sqrt{15}}{-7}

= \dfrac{(-19)}{7} - \dfrac{5\sqrt{15}}{7}

Now as

\dfrac{(-19)}{7} - \dfrac{5\sqrt{15}}{7} = a - b\sqrt{15}

By comparing both sides

\huge{\boxed{\sf{ a = \dfrac{-19}{7}}}}

\huge{\boxed{\sf{ b = \dfrac{5}{7}}}}

Similar questions