Math, asked by nitisha5858, 8 months ago

find 20th term from the last term of the ap 2,7,12.........212

Answers

Answered by Anonymous
2

Answer:

\sf{The \ 20^{th} \ term \ from \ the \ last \ is \ 117.}

Given:

  • The given A.P. is 2, 7, 12,...,212

To find:

  • \sf{20^{th} \ term \ from \ the \ last.}

Solution:

\sf{The \ given \ A.P. \ is}

\sf{2, \ 7, \ 12,...,212}

\sf{Here, \ first \ term(a)=2}

\sf{Common \ difference (d)=7-2=5}

\sf{n^{th} \ term(t_{n})=212}

\boxed{\sf{t_{n}=a+(n-1)d}}

\sf{\leadsto{212=2+(n-1)\times5}}

\sf{\leadsto{\therefore{5(n-1)=212-2}}}

\sf{\leadsto{\therefore{5(n-1)=210}}}

\sf{\leadsto{\therefore{n-1=\dfrac{210}{5}}}}

\sf{\leadsto{\therefore{n-1=42}}}

\sf{\leadsto{\therefore{n=42+1}}}

\sf{\leadsto{\therefore{n=43}}}

\sf{2^{nd} \ term \ from \ last=t_{n-1}}

\sf{\therefore{20^{th} \ term \ from \ last=t_{n-19}}}

\sf{\leadsto{t_{n-19}=a+(n-19-1)d}}

\sf{\leadsto{\therefore{t_{n-19}=2+(43-20)\times5}}}

\sf{\leadsto{\therefore{t_{n-19}=2+(23\times5)}}}

\sf{\leadsto{\therefore{t_{n-19}=2+115}}}

\sf{\leadsto{\therefore{t_{n-19}=117}}}

\sf\purple{\tt{\therefore{The \ 20^{th} \ term \ from \ the \ last \ is \ 117.}}}

Similar questions