Find 3 no of an Ap whose Sum is 15 & product is 45. let 3 terms are (a-d),a,a+d
Answers
EXPLANATION.
Three numbers are in ap.
Sum of an ap = 15.
Products of an ap = 45.
As we know that,
Three numbers are in ap.
⇒ (a - d), a, (a + d).
Sum of an ap = 15.
⇒ a - d + a + a + d = 15.
⇒ 3a = 15.
⇒ a = 5.
Products of an ap = 45.
⇒ (a - d) x (a) x (a + d) = 45.
⇒ (a - d)(a + d) x (a) = 45.
⇒ (a² - d²) x (a) = 45.
Put the value of a = 5 in equation, we get.
⇒ [(5)² - d²] x (5) = 45.
⇒ [25 - d²] = 9.
⇒ 25 - d² = 9.
⇒ - d² = 9 - 25.
⇒ - d² = - 16.
⇒ d² = 16.
⇒ d = √16.
⇒ d = ± 4.
Case = 1.
First term = a = 5.
Common difference = d = 4.
⇒ (a - d), (a), (a + d).
Put the values in the equation, we get.
⇒ (5 - 4), (5), (5 + 4).
⇒ 1, 5, 9
Three numbers are : 1, 5, 9.
Case = 2.
First term = a = 5.
Common difference = d = - 4.
⇒ (a - d), (a), (a + d).
Put the values in the equation, we get.
⇒ [(5) - (-4)], (5), [5 + (-4)].
⇒ [5 + 4], [5], [5 - 4].
⇒ 9, 5, 1.
Three numbers are : 9, 5, 1.