Math, asked by soham9051, 10 months ago

Find 36 th tearm of ap 112,109,106,103

Answers

Answered by rishu6845
1

Answer:

112,109,106,103..............

a=112,d=109-112=-3,n=36

nth term=a+(n-1)d

=112+(36-1)(-3)

=112+35(-3)

=112-105=7

Answered by BrainlyConqueror0901
8

Answer:

\huge{\pink{\green{\sf{\therefore a_{36}=7}}}}

Step-by-step explanation:

\huge{\pink{\green{\underline{\red{\sf{SOLUTION-}}}}}}

• In the given question information given about an A.P.

• So,we have to find the given term.

• According to given question :

 \underline \bold{given : } \\   \bold{\implies a.p = 112,109,106,103,...} \\ \bold { \implies a = 112} \\ \bold { \implies d =  - 3} \\   \\  \underline \bold{to \: find : } \\ \bold { a_{36} =  ?  }

▪Shortcut method to find any term of a series is first term + 1 less than the given terms multiply d.

For example :

• a23 = a + 22d

• a34 = a + 33d

 \bold{by \: formula : } \\  \implies  a_{n} = a + (n - 1)d \\  \implies a_{36} = 112 + (36 - 1) \times ( - 3 )\\  \implies a_{36} = 112 + 35 \times ( - 3) \\  \implies a_{36} = 112 - 105 \\  \bold {\therefore a_{36} = 7} \\  \\  \bold{shortcut \: method :} \\  \implies a_{36} = a + 35d \\  \implies a_{36} = 112 + 35 \times  (- 3) \\  \implies a_{36} = 112 - 105 \\   \bold{\therefore a_{36} = 7}

Similar questions