find (3x+2) Power raise to 3, using identity
Answers
Answered by
1
★ANSWER :-
Given: The equation ( (3x/2) + 1)^3
To find: Write it in expanded form.
Solution:
Now we have given ( (3x/2) + 1)^3
We know the formula:
(a + b)^3 = a^3 + b^3 + 3ab(a+b)
So using this formula, we get:
⟹( (3x/2) + 1)^3 = (3x/2)^3 + 1^3 + 3(3x/2)(1)((3x/2) + 1)
⟹( (3x/2) + 1)^3 = (3x/2)^3 + 1^3 + 3(3x/2)(1)((3x/2) + 1)
⟹( (3x/2) + 1)^3 = 27x^3 / 8 + 1 + 27x^2 /4 + 9x/2
⟹( (3x/2) + 1)^3 = (3x/2)^3 + 1^3 + 3(3x/2)(1)((3x/2) + 1)
⟹( (3x/2) + 1)^3 = 27x^3 / 8 + 1 + 27x^2 /4 + 9x/2
⟹( (3x/2) + 1)^3 = 27x^3 / 8 + 27x^2 /4 + 9x/2 + 1
HOPE THIS HELPS ☺️❤️
BE BRAINLY ⚡☃️
Similar questions
Math,
2 months ago
History,
2 months ago
Math,
2 months ago
Social Sciences,
4 months ago
Computer Science,
4 months ago
Geography,
10 months ago
Math,
10 months ago