Math, asked by johnnysins262, 1 year ago

find 4+3√(5)÷4-3√(5)=a+b√(5)​

Answers

Answered by DevyaniKhushi
2

 \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  =   a+ b\sqrt{5}  \\ \\  Solving \:  LHS,  \\    \\{ \large{ \boxed{ \frac{ {(4 + 3 \sqrt{5} )}^{2} }{(4 - 3 \sqrt{5} )(4 + 3 \sqrt{5} )}}}}  \\  \\ {\large{ \boxed{ \frac{16 + 45 + 24 \sqrt{5} }{16 - 45}  }}} \\  \\ {\large{ \boxed{ \frac{61 + 24 \sqrt{5} }{ - 29} }}} \\

Hence,

{\huge{ \boxed{a =  \frac{ - 61}{29} }}} \\  \\ {\huge{ \boxed{b =  \frac{24}{29} }}}

Answered by WaterPearl
23

Question

{ \sf{ \dfrac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5}} = a + b \sqrt{5}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution

\longrightarrow{ \sf{ \dfrac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5}} = a + b \sqrt{5}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow{ \sf{ \dfrac{(4 + 3 \sqrt{5})^{2}  }{4 - 3 \sqrt{5} }(4 + 3 \sqrt{5}}})

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow{ \sf{ \dfrac{16 + 45 + 25 \sqrt{5} }{16 - 45}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow{ \sf{ \dfrac{-61 + -24 \sqrt{5} }{29}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

 \longrightarrow{ \sf{ \dfrac{-61}{29}}-{\dfrac{-24 \sqrt{5}}{29}}} ⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore,

\longrightarrow{\sf{a =  \dfrac{-61}{29}} } \\  \\  \\  \longrightarrow{\sf{b =  \frac{-24}{29}}}

Similar questions