find (50²-49²)+(48²-47²)+(46²-45²)+.......+(2²-1²)
Answers
Answered by
6
Answer:
1275
Step-by-step explanation:
METHOD 1
Above series can be broken into two different parts .
Even sum = 2n(n+1)(2n+1)/3
Odd sum = n(2n+1)(2n-1)/3
50²-49²)+(48²-47²)+(46²-45²)+.......+(2²-1²)
=( 50^2 + 48^2 ...+2^2 )-(49^2 + 47^2 ..+1^2)
= 2(25)(26)(50+1)/3 - 25(50+1)(50-1)/3
= 50*26*51/3 - 25*51*49/3
= (66300 - 62475)/3
= 3825/3 = 1275
METHOD 2
(50+49)(50-49) + (48+47)(48-47) + (46+45)(46-45)+.....(2+1)(2-1)
= 99*1 + 95*1 + 91*1 + ....3*1
Tn = 99 + (n-1)(-4)
3 = 99-4n + 4
4n = 100
n = 25
Sn = (25/2)[2(99) + (n-1)d]
= (25/2)[198+(24)(-4)]
= 12.5×(198-96)
= 12.5 × 102
= 1275
Similar questions