find (81^1/4+225^1/3)
avittom:
steps also required
Answers
Answered by
0
81^1/4 - 8(216)^1/3 + 15(32)^1/5 + root of 225
\begin{lgathered}= \sqrt[4]{81} - 8( \sqrt[3]{216} ) \\ + 15( \sqrt[5]{32} + \sqrt{225} \\ = \sqrt[4]{3 \times 3 \times 3 \times 3} - 8( \sqrt[3]{6 \times 6 \times 6} \\ 15( \sqrt[5]{2 \times 2 \times 2 \times 2 \times 2} + \sqrt{3 \times 3 \times 5 \times 5} \\ = 3 - 8(6) + 15(2) + 15 \\ = 3 - 48 + 30 + 15 \\ = 48 - 48 \\ = 0\end{lgathered}=481−8(3216)+15(532+225=43×3×3×3−8(36×6×615(52×2×2×2×2+3×3×5×5=3−8(6)+15(2)+15=3−48+30+15=48−48=0
\begin{lgathered}= \sqrt[4]{81} - 8( \sqrt[3]{216} ) \\ + 15( \sqrt[5]{32} + \sqrt{225} \\ = \sqrt[4]{3 \times 3 \times 3 \times 3} - 8( \sqrt[3]{6 \times 6 \times 6} \\ 15( \sqrt[5]{2 \times 2 \times 2 \times 2 \times 2} + \sqrt{3 \times 3 \times 5 \times 5} \\ = 3 - 8(6) + 15(2) + 15 \\ = 3 - 48 + 30 + 15 \\ = 48 - 48 \\ = 0\end{lgathered}=481−8(3216)+15(532+225=43×3×3×3−8(36×6×615(52×2×2×2×2+3×3×5×5=3−8(6)+15(2)+15=3−48+30+15=48−48=0
Similar questions