Find 8x³ + 27y³ if 2x + 3y =13 and xy=6
Answers
Answered by
9
Given 2x + 3y = 13 and xy = 6.
Cubing on both sides, we get
We know that (a+b)^3 = a^3 + b^3 + 3ab(a+b).
(2x + 3y)^3 = (2x)^3 + (3y)^3 + 3(2x)(3y)(2x + 3y) = (13)^3
8x^3 + 27y^3 + 18xy(13) = 2197
8x^3 + 27y^3 + 18(6)(13) = 2197
8x^3 + 27y^3 + 1404 = 2197
8x^3 + 27y^3 = 2197 - 1404
= 793
Therefore 8x^3 + 27y^3 = 793.
Hope this helps!
Cubing on both sides, we get
We know that (a+b)^3 = a^3 + b^3 + 3ab(a+b).
(2x + 3y)^3 = (2x)^3 + (3y)^3 + 3(2x)(3y)(2x + 3y) = (13)^3
8x^3 + 27y^3 + 18xy(13) = 2197
8x^3 + 27y^3 + 18(6)(13) = 2197
8x^3 + 27y^3 + 1404 = 2197
8x^3 + 27y^3 = 2197 - 1404
= 793
Therefore 8x^3 + 27y^3 = 793.
Hope this helps!
Answered by
34
Answer:
We have,
(2x + 3y) = 13
Cubing on both the sides
=> (2x + 3y)³ = 13³
=> (2x)³ + (3y)³ + 3 × 2x × 3y (2x + 3y) = 13³
Now, by solving this equation
=> 8x³ + 27y³ + 18xy (2x + 3y) = 2197
=> 8x³ + 27y³ + 18 × 6 × 13 = 2197
=> 8x³ + 27y³ + 1404 = 2197
=> 8x³ + 27y³ = 2197 - 1404
= 793
Hence, the value of 8x³ + 27y³ is 793.
Similar questions