Find a^2+ 1/a^2,a^3+1/a^3 and a^4+1/a^4, if a+1/a=3
Answers
Answered by
0
Step-by-step explanation:
a+1/a=3
a^2+ 1/a^2
= (a)^2+(1/a)^2
= (a+1/a)^2 — 2*a*1/a
= (3)^2—2
= 9-2
= 7
a^3+1/a^3
= (a)^3+(1/a)^3
= (a+1/a)[(a)^2—a*1/a+(1/a)^2]
= 3[(a)^2+(1/a)^2]
= 3[(a+1/a)^2 — 2*a*1/a]
=3[(3)^2—2]
= 3(9-2)
=21
a^4+1/a^4
= (a^2)^2+(1/a^2)^2
= (a^2+1/a^2)^2 — 2*a^2*1/a^2
=[ (a+1/a)^2—2*a*1/a ]^2— 2
= [(3)^2—2]^2—2
= (9-2)^2—2
= (7)^2—2
= 49—2
= 47
Similar questions
Math,
2 months ago
Social Sciences,
2 months ago
Accountancy,
2 months ago
Physics,
5 months ago
Math,
5 months ago
Physics,
11 months ago
Math,
11 months ago