Math, asked by karthik1061983gmail, 1 month ago

Find (a) -2½ + 4⅝ (b) -1⅞ – (– 2¾)​

Answers

Answered by shiprasamal21
0

Answer:

algebra or integer I can't understand if you can tell it clearly I can answer

Step-by-step explanation:

I I can tell this answer but my answer should be wrong you have to - 2 + 4 the answer should be 8 and b ye number answer is 3

Answered by ItzImran
7

\large\color{#00FF7F}\boxed{\colorbox{black}{Answer : - }}

-2 \frac{ 1  }{ 2  }  +4 \frac{ 5  }{ 8  }

 \color{red}Multiply \:  2 \:  and \:  2  \: to  \: get \:  4.

-\frac{4+1}{2}+\frac{4\times 8+5}{8}

 \color{navy}Add  \: 4  \: and \:  1 \:  to  \: get \:  5.

-\frac{5}{2}+\frac{4\times 8+5}{8}

 \color{green}Multiply  \: 4  \: and  \: 8 \:  to \:  get  \: 32.

-\frac{5}{2}+\frac{32+5}{8}

 \color{orange}Add  \: 32  \: and  \: 5 \:  to \:  get  \: 37.

-\frac{5}{2}+\frac{37}{8}

 \color{brown}Least  \: common  \: multiple \:  of \:  \\  \color{brown} 2 \:  and  \: 8 \:  is  \: 8. \:  Convert  \: -\frac{5}{2}  \: and  \: \frac{37}{8} \\  \color{brown} to  \: fractions  \: with  \: denominator  \: 8.

-\frac{20}{8}+\frac{37}{8}

 \color{hotpink}Since \:  -\frac{20}{8}  \: and  \: \frac{37}{8}  \: have \:  the  \: same \\   \color{red}denominator, add \:  them  \: by  \:  \\  \color{green}adding \:  their \:  numerators. \:

\frac{-20+37}{8}

 \color{indigo}Add  \: -20 \:  and  \:  37  \: to \:  get \:  17.

final \: answer : \frac{17}{8}

B)

-1 \frac{ 7  }{ 8  }  -(-2 \frac{ 3  }{ 4  }  )

 \color{red}Multiply \:  1  \: and \:   \: 8 \:  t o  \: get  \: 8.

-\frac{8+7}{8}-\left(-\frac{2\times 4+3}{4}\right)

 \color{blue}Add \:  8  \: and  \: 7 \:  to \:  get  \: 15.

-\frac{15}{8}-\left(-\frac{2\times 4+3}{4}\right)

 \color{green}Multiply  \: 2 \:  and \:  4 \:  to \:  get  \: 8.

-\frac{15}{8}-\left(-\frac{8+3}{4}\right)

 \color{hotpink}Add  \: 8  \: and  \: 3 \:  to  \: get  \: 11.

-\frac{15}{8}-\left(-\frac{11}{4}\right)

 \color{orange}The  \: opposite  \: of \:  -\frac{11}{4}  \: is  \: \frac{11}{4}.

-\frac{15}{8}+\frac{11}{4}

Least \:  common  \: multiple  \: of  \: 8  \\ and  \: 4  \: is  \: 8.  \: Convert  \: -\frac{15}{8} \:  and  \: \frac{11}{4}  \\ to  \: fractions  \: with \:  denominator \:  8.

-\frac{15}{8}+\frac{22}{8}

 \color{green}Since  \: -\frac{15}{8}  \: and  \: \frac{22}{8} \:  have \:  the \:  \\   \color{red}same \:  denominator, \:  add  \: them  \\  \color{navy}by  \: adding  \: their  \: numerators.

\frac{-15+22}{8}

 \color{indigo}Add  \: -15 \:  and  \: 22 \:  to \:  get  \: 7.

final \: answer : \frac{7}{8}

Similar questions