Math, asked by agentorange43, 1 year ago

find a^2 + b^2
if a= (√3 - √2) / (√3 + √ 2)
b= (√3 + √2) / (√3 - √2)​

Attachments:

Answers

Answered by amankumaraman11
2

a =  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  \\  \\ b =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }

a =  \frac{( \sqrt{3} -   \sqrt{2}  )( \sqrt{3}  -  \sqrt{2} )}{ {( \sqrt{3} )}^{2} -  {( \sqrt{2}) }^{2}  }  \\  \\   \:  \:  \: =  \frac{3 + 2 - 2 \sqrt{6} }{3 - 2}  =  \frac{5 - 2 \sqrt{6} }{1}  = 5 - 2 \sqrt{6}  \\  \\  \\  \\ b =  \frac{( \sqrt{3} +  \sqrt{2}  )( \sqrt{3}  +  \sqrt{2} )}{ {( \sqrt{3} )}^{2} -  {( \sqrt{2}) }^{2}  }  \\  \\   \:  \:  \:  =  \frac{3 + 2 + 2 \sqrt{6} }{3 - 2}  =  \frac{5 + 2 \sqrt{6} }{1}  = 5 + 2 \sqrt{6}

Now,

 {a}^{2}  +  {b}^{2}  =  {(a + b)}^{2}  - 2ab \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  {(5 - 2 \sqrt{6}  + 5 + 2 \sqrt{6}) }^{2}  - 2(5 + 2 \sqrt{6} )(5 -  2\sqrt{6} )\\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =  {(5 + 5)}^{2}  - 2[ {(5)}^{2} -  {(2 \sqrt{6}) }^{2}  ] \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    =  {10}^{2}  - 2(25 - 24)\\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    = 100 - 2 = 98

Similar questions