Find a^3+b^3+c^3-3abc ifa+b+c=5 and a^2+b^2+c^2= 29
Answers
Answered by
1
We know that ,
a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca).
Now,
(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)
5^2=29+2(ab+bc+ca)
25-29=2(ab+bc+ca)
-4=2(ab+bc+ca)
ab+bc+ca=-4/2
ab+bc+ca=-2 --------------------------------------------------eq.1
Now,
a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
a^3+b^3+c^3-3abc=(a+b+c)[a^2+b^2+c^2-(ab+bc+ca)] -------------eq.2
By putting the value of eq.1 in eq.2,
a^3+b^3+c^3-3abc=(5)[29-(-2)]
a^3+b^3+c^3-3abc=5(29+2)
a^3+b^3+c^3-3abc=5*31
a^3+b^3+c^3-3abc=155
a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca).
Now,
(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)
5^2=29+2(ab+bc+ca)
25-29=2(ab+bc+ca)
-4=2(ab+bc+ca)
ab+bc+ca=-4/2
ab+bc+ca=-2 --------------------------------------------------eq.1
Now,
a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
a^3+b^3+c^3-3abc=(a+b+c)[a^2+b^2+c^2-(ab+bc+ca)] -------------eq.2
By putting the value of eq.1 in eq.2,
a^3+b^3+c^3-3abc=(5)[29-(-2)]
a^3+b^3+c^3-3abc=5(29+2)
a^3+b^3+c^3-3abc=5*31
a^3+b^3+c^3-3abc=155
Similar questions