find a=4, b=2(4+2)^2=6^2 by using (a+b)^2 a^2=2ab+b^2 with explanation
Answers
Answer:
(a + b)2 = a2 + 2ab + b2; a2 + b2 = (a + b)2 − 2ab
2. (a − b)2 = a2 − 2ab + b2; a2 + b2 = (a − b)2 + 2ab
3. (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
4. (a + b)3 = a3 + b3 + 3ab(a + b); a3 + b3 = (a + b)3 − 3ab(a + b)
5. (a − b)3 = a3 − b3 − 3ab(a − b); a3 − b3 = (a − b)3 + 3ab(a − b)
6. a2 − b2 = (a + b)(a − b)
7. a3 − b3 = (a − b)(a2 + ab + b2)
8. a3 + b3 = (a + b)(a2 − ab + b2)
9. an − bn = (a − b)(an−1 + an−2b + an−3b2 + ··· + bn−1)
10. an = a.a.a . . . n times
11. am.an = am+n
12. am
an = am−n if m>n
= 1 if m = n
= 1
an−m if m<n; a ∈ R, a 6= 0
13. (am)n = amn = (an)m
14. (ab)n = an.bn
15. a
b
n
= an
bn
16. a0 = 1 where a ∈ R, a 6= 0
17. a−n = 1
an , an = 1
a−n
18. ap/q = √q ap
19. If am = an and a 6= ±1, a 6= 0 then m = n
20. If an = bn where n 6= 0, then a = ±b
I hope it proves helpful.