Math, asked by kukkuu, 10 months ago

find
a) A +2B
b) (A+2B)^T​

Attachments:

Answers

Answered by BrainlyPopularman
54

GIVEN :

   \\  \:  \:  { \huge{.}} \:  \: \: \sf {A}^{T}   = \: \begin{bmatrix} - 2&3 \\  \\ 1&2 \end{bmatrix} \\

   \\  \:  \:  { \huge{.}} \:  \: \: \sf And \:  \:  \: B   = \: \begin{bmatrix} - 1&0 \\  \\ 1&2 \end{bmatrix} \\

TO FIND :

   \\  \:  \:  \: \sf (a) \:  \:  \: A + 2B = ? \\

   \\  \:  \:  \: \sf (b) \:  \:  \:( A + 2B) ^{T}  = ? \\

SOLUTION :

   \\ \implies \sf {A}^{T}   = \: \begin{bmatrix} - 2&3 \\  \\ 1&2 \end{bmatrix} \\

• So that 'A' –

   \\ \implies \sf {A}   = \: \begin{bmatrix} - 2&1 \\  \\ 3&2 \end{bmatrix} \\

   \\  \:  \:  \: \sf (a) \:  \:  \: A + 2B = ? \\

   \\  \:  \sf\:  \implies  \: A + 2B = \begin{bmatrix} - 2&1 \\  \\ 3&2 \end{bmatrix} + 2\begin{bmatrix} - 1&0 \\  \\ 1&2 \end{bmatrix}  \\

   \\  \:  \sf\:  \implies  \: A + 2B = \begin{bmatrix} - 2&1 \\  \\ 3&2 \end{bmatrix} + \begin{bmatrix} - 2&0 \\  \\ 2&4 \end{bmatrix}  \\

   \\  \:  \sf\:  \implies  \: A + 2B = \begin{bmatrix} - 4&1 \\  \\ 5&6 \end{bmatrix} \\

   \\  \:  \:  \: \sf (b) \:  \:  \:( A + 2B) ^{T}  = ? \\

• Using part (a) –

   \\  \:  \sf\:  \implies  \: A + 2B = \begin{bmatrix} - 4&1 \\  \\ 5&6 \end{bmatrix} \\

• Take transpose –

   \\  \:  \sf\:  \implies  \: (A + 2B)^{T}  = \begin{bmatrix} - 4&5 \\  \\ 1&6 \end{bmatrix} \\

Answered by Anonymous
10

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

 \star\: {A}^{T} =  \sf{\begin{bmatrix}  - 2 &3 \\ 1 & 2\end{bmatrix}}

   \star \: {B } =  \sf{\begin{bmatrix}  -1 &0 \\1 & 2\end{bmatrix}}

{\bf{\blue{\underline{To\:Find:}}}}

 (1). \:  \: {\sf{ A + 2B}} \\ \\

 (2). \:  \: {\sf{( A+ 2B) ^{T} }} \\ \\

{\bf{\blue{\underline{Now:}}}}

 : \implies {A}^{T} =  \sf{\begin{bmatrix}  - 2 &3 \\ 1 & 2\end{bmatrix}}

 : \implies {A} =  \sf{\begin{bmatrix}  - 2 &1 \\ 3 & 2\end{bmatrix}}

 : \implies {A}  + 2b=  \sf{\begin{bmatrix}  - 2 &1 \\ 3 & 2\end{bmatrix}  } +2 \sf{\begin{bmatrix}  - 1 &0 \\ 1 & 2\end{bmatrix}  }

 : \implies {A}  + 2b=  \sf{\begin{bmatrix}  - 2 &1 \\ 3 & 2\end{bmatrix}  } + \sf{\begin{bmatrix}  - 2&0 \\ 2 & 4\end{bmatrix}  }

 : \implies {A}  + 2b=  \sf{\begin{bmatrix}  -4 &1 \\ 5 & 6\end{bmatrix}  }

___________________________________

 : \implies {A}  + 2b=  \sf{\begin{bmatrix}  -4 &1 \\ 5 & 6\end{bmatrix}  }

Now transpose of Matrix,

 : \implies ({A}  + 2b)^{t} =  \sf{\begin{bmatrix}  -4&5 \\ 1 & 6\end{bmatrix}  }

__________________________________

  \star \:   \underline {\mathfrak{  \green{Transpose \: of \: matrix :}}} \\

  • The Matrix obtained from any given matrix A by interchanging it rows and columns is called is transpose and is denoted by A' or A^t.

  \star \:   \underline {\mathfrak{  \green{properties:}}} \\

 : \implies{\sf{ ( { {A}^{'} )}^{'}  = A}} \\ \\

 : \implies{\sf{ ( { {A + B})}^{'}  =  {A}^{'} +  {B}^{'}   }} \\ \\

 : \implies{\sf{ ( { {AB})}^{'}  =  k{A}^{'}   }} \\ \\

 : \implies{\sf{ ( { {AB})}^{ - 1}  =   {B}^{ - 1} {A}^{ - 1}   }} \\ \\

Similar questions