find a & b if
√2+√3 / 3√2-2√3 = a+b√6
Answers
Answer:
✓2+✓3 / 3✓2-2✓3=a+b✓6
=✓2+✓3+3✓2-2✓3
=✓2(1+✓3)+3(1-2)✓3
=4✓2+(-3)✓3
=4✓2-3✓3ans.
Question:
Find a and b if ;
(√2 + √3)/(3√2 - 2√3) = a + b√6
Answer:
a = 2
b = 5/6
Solution:
Here, we have;
(√2 + √3)/(3√2 - 2√3) = a + b√6
Thus,
a + b√6 = (√2 + √3)/(3√2 - 2√3) -------(1)
Now,
Rationalising the denominator in the RHS of eq-(1) , we have ;
(√2 + √3)(3√2 + 2√3)
=> a + b√6 = ––––––––––––––––––
(3√2 - 2√3)(3√2 + 2√3)
√2•3√2 + √2•2√3 + √3•3√2 + √3•2√3
= ––––––-------––––––––––-------------------
(3√2)² – (2√3)²
3•2 + 2•√(2•3) + 3•√(3•2) + 2•3
= ------------------------------------------------
9•2 – 4•3
6 + 2√6 + 3√6 + 6
= --------------------------------
18 – 12
12 + 5√6
= ---------------
6
= 12/6 + 5√6/6
= 2 + (5/6)•√6
Hence,
a + b√6 = 2 + (5/6)•√6 --------(2)
Now,
Comparing both sides of eq-(2) , we have ;
a = 2 and b = 5/6
Hence,
The required values of a and b are 2 and 5/6 respectively.