Math, asked by s8a2365disha00088, 9 days ago

find a & b if 5+2√3 / 7+4√3 = a - b √3​

Answers

Answered by VεnusVεronίcα
11

Required answer:

The values of "a" and "b" respectively are 11 and 6.

 \\

\qquad_____________

 \\

Step-by-step explanation:

\pink{ \tt \dashrightarrow \:  \:  \:  \dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a - b \sqrt{3}}

 \:

Firstly, rationalizing the denominator of the LHS :

 \green{\tt \dashrightarrow \:  \:  \:  \dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times \bigg \{  \dfrac{7 -4 \sqrt{3}  }{7 - 4 \sqrt{3} }  \bigg \}}

 \:

Using (a – b) (a + b) = a² – b² for the denominator :

 \pink{ \tt \dashrightarrow \:  \:  \:  \dfrac{5 \: (7 - 4 \sqrt{3} ) + 2 \sqrt{3} \: (7 - 4 \sqrt{3}  )}{ {(7)}^{2}  -  {(4 \sqrt{3} )}^{2} } }

 \:

  \green{\tt \dashrightarrow \:  \:  \:  \dfrac{35 - 20 \sqrt{3} + 14 \sqrt{3}  - 24 }{49 - 48}}

 \:

 \pink{\tt \dashrightarrow \:  \:  \:  \dfrac{ 11- 6 \sqrt{3} }{1} }

 \:

 \green{ \tt \dashrightarrow \:  \:  \: 11 - 6 \sqrt{3} }

 \\

\qquad_____________

 \\

On comparing this to RHS, we get the values as :

  \pink{ \tt   \dashrightarrow\:  \:  \: a = 11}

 \:

 \green{ \tt \dashrightarrow \:  \:  \: b =   6}

Answered by MathCracker
23

Question :-

find a & b if 5+2√3 / 7+4√3 = a - b √3.

Solution :-

Given :

 \sf{ \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } = a + b \sqrt{3}  } \\

Since, Rationalization of :

 \sf{ \frac{a +  \sqrt{b} }{c +  \sqrt{d} }  =  \frac{a +  \sqrt{b} }{c +  \sqrt{d} } \times  \frac{c -  \sqrt{d} }{c -  \sqrt{d} }  } \\

Taking LHS to rationalization,

\sf:\longmapsto{ \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3}  }  =  \frac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} } \times  \frac{7 - 4 \sqrt{3} }{7 -  4\sqrt{3} }  } \\

Using Identity : (a+b) (a-b) = a² - b²

\sf:\longmapsto{ \frac{(5 + 2 \sqrt{3} )(7 - 4 \sqrt{3} )}{(7 + 4 \sqrt{3})(7 - 4 \sqrt{3} ) }  }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf:\longmapsto{ \frac{5(7 - 4 \sqrt{3} ) + 2 \sqrt{3} (7 - 4 \sqrt{3}) }{(7) {}^{2} - (4 \sqrt{3} ) {}^{2}  } } \\  \\ \sf:\longmapsto{ \frac{35 - 20 \sqrt{3}  + 14 \sqrt{3} - 8(3) }{49 - 16(3)} } \:  \:  \:  \:   \\  \\ \sf:\longmapsto{ \frac{35 - 6 \sqrt{3} - 24 }{49 - 48} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf:\longmapsto{11 - 6 \sqrt{3} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now, Compare both side

\sf:\longmapsto{11 - 6  \:  \cancel{\sqrt{3} }= a - b \:    \cancel{\sqrt{3} } } \\  \\ \sf:\longmapsto{11 - 6 = a - b} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

After comparison we get,

  • a = 11
  • b = 6

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

Find the value of a & b if 5 + 2√3= a + b√3 ------------ 7 + 4√3..

https://brainly.in/question/20711320

Similar questions