Math, asked by mrchetraj8765501516, 1 month ago

find a and b
1.√3−√2÷√3+√2 =a+b√2,
2.3+√7÷3−√7=a+b√7, 3.√5+√3÷√5−√3=a+b√15. ​

Answers

Answered by sandy1816
3

1. \:  \:  \:  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  = a + b \sqrt{2}  \\  \frac{\sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  = a + b \sqrt{2}  \\  \frac{( { \sqrt{3}  -  \sqrt{2} })^{2} }{3 - 2}  = a + b \sqrt{2}  \\ 3 + 2 - 2 \sqrt{3}  \sqrt{2}  = a + b \sqrt{2}  \\ 5 - 2 \sqrt{3}  \sqrt{2}  = a + b \sqrt{2}  \\ comparing \: both \: sides \: we \: get \\ a = 5  \: \:  \:  and \:  \: \: b =  - 2 \sqrt{3}  \\ \\  2. \:  \:  \:  \frac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  = a + b \sqrt{7}  \\  \frac{( {3 +  \sqrt{7} })^{2} }{ {3}^{2} - ( { \sqrt{7} })^{2}  }  = a + b \sqrt{7}  \\  \frac{9 + 7 + 6 \sqrt{7} }{9 - 7}  = a + b \sqrt{7}  \\  \frac{16 + 6 \sqrt{7} }{2}  = a + b \sqrt{7}  \\ 8 + 3 \sqrt{7}  = a + b \sqrt{7}  \\ so \:  \:  \: a = 8 \:  \: and \:  \: b = 3 \\  \\ 3. \:  \:  \:  \frac{ \sqrt{5}  +  \sqrt{3} }{ \sqrt{5} -  \sqrt{3}  }  = a + b \sqrt{15}  \\  \frac{( { \sqrt{5} +  \sqrt{3}  })^{2} }{( { \sqrt{5} })^{2}  - ( { \sqrt{3} })^{2} }  = a + b \sqrt{15}  \\  \frac{5 + 3 + 2 \sqrt{15} }{5 - 3}  = a + b \sqrt{15}  \\  \frac{8 + 2 \sqrt{15} }{2}  = a + b \sqrt{15}  \\ 4 +  \sqrt{15}  = a + b \sqrt{15 }  \\ comparing \: both \: sides \\ a = 4 \:  \:  \: b = 1

Similar questions