Math, asked by artartist26, 10 months ago

Find a and b (4 + 3 root 5 /4 - 3 root 5) + (4- 3 root 5 / 4 + 3 root 5) = a + b root 5​

Answers

Answered by Anonymous
4

Answer:

\sf{The \ value \ of \ a \ is \ -\dfrac{122}{29} \ and}

\sf{b \ is \ 0.}

Given:

\sf{\dfrac{4+3\sqrt5}{4-3\sqrt5}+\dfrac{4-3\sqrt5}{4+3\sqrt5}=a+b\sqrt5}

To find:

  • Value of a and b.

Solution:

\sf{a+b\sqrt5=\dfrac{4+3\sqrt5}{4-3\sqrt5}+\dfrac{4-3\sqrt5}{4+3\sqrt5}}

\sf{=\dfrac{(4+3\sqrt5)^{2}+(4-3\sqrt5)^{2}}{(4+3\sqrt5)(4-3\sqrt5)}}

\sf{=\dfrac{2(4)^{2}+2(3\sqrt5)^{2}}{4^{2}-(3\sqrt5)^{2}}}

\sf{=\dfrac{2(16)+2(45)}{16-45}}

\sf{=\dfrac{32+90}{-29}}

\sf{\therefore{a+b\sqrt5=-\dfrac{122}{29}}}

\sf{On \ comparing \ we \ get}

\sf{a=-\dfrac{122}{29} \ and \ b\sqrt5=0}

\sf{\therefore{a=-\dfrac{122}{29} \ and \ b=0}}

\sf\purple{\tt{\therefore{The \ value \ of \ a \ is \ -\dfrac{122}{29} \ and}}}

\sf\purple{\tt{b \ is \ 0.}}

____________________________

\sf\blue{Extra \ identities:}

\sf{(a+b)^{2}+(a-b)^{2}=2a^{2}+2b^{2}}

\sf{(a+b)^{2}-4ab=(a-b)^{2}}

\sf{(a-b)^{2}+4ab=(a+b)^{2}}

Similar questions