Math, asked by anshikatripathi4321, 11 months ago

Find a and b
(5+3√2)/(5-3√2) = a+b√2

Don't give any other answers

Answers

Answered by poornavarshithaa00
3

Answer:

We rationalize the denominator

Hope it helps you buddy.

Mark my answer as the brainiest if you feel this answer deserves it.

Attachments:
Answered by amitkumar44481
6

 \bold \red \star \:  \underline{Given:-}

 \frac{5 + 3 \sqrt{2} }{5  - 3 \sqrt{2}  }  = a + b \sqrt{2} . \\  \\

\rule{200}2

 \\ \\ \bold \red \star \:  \underline{Solution:-}

 \tt{Taking  \:  \red{LHS}.}

 \frac{5 + 3 \sqrt{2} }{5 - 3 \sqrt{2} }  \\  \\

 \tt{Rationalize \:  the \:  \red{ denominator}.}

 \frac{5 + 3 \sqrt{2} }{5 - 3 \sqrt{2} }  \times  \frac{5 + 3 \sqrt{2} }{5  + 3 \sqrt{2 } }  \\  \\  \frac{  {(5 + 3 \sqrt{2} ) }^{2} }{ {(5)}^{2}  -  {(3 \sqrt{2}) }^{2} }

 \\    \frac{25 + 18 + 30 \sqrt{2} }{25 - 18}  \\  \\

 \frac{43 + 30 \sqrt{2} }{7}  \\  \\

Or,   \\  \\  \:  \:  \:  \:  \:  \:  \:  \:   \red{a} =  \frac{43}{7}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red{b }=  \frac{30 \sqrt{2} }{7} .

Similar questions