Math, asked by himanshusethi0510, 1 month ago

Find a and b from the above question. Please give step by step explanation also.​

Attachments:

Answers

Answered by TYKE
2

so \: the \: values \: are  \: \boxed{a = 0} \: and \:  \boxed{b = 1}

Step-by-step explanation:

 \frac{7 +  \sqrt{5} }{7  -  \sqrt{5} }  -  \frac{7 -  \sqrt{5} }{7 +  \sqrt{5} }  = a +  b\frac{7}{11}\sqrt{5}

 \frac{(7 +  \sqrt{5} )(7 +  \sqrt{5} )}{(7 -  \sqrt{5})(7 +  \sqrt{5} ) }  -  \frac{(7 -  \sqrt{5} )(7 -  \sqrt{5} )}{(7 +  \sqrt{5} )(7 -  \sqrt{5} )}  = a +  b\frac{7}{11}  \sqrt{5}

 \frac{(7  +  \sqrt{5} )^{2} }{ {(7)}^{2} -  {( \sqrt{5} )}^{2}  } -  \frac{(7 -  \sqrt{5} )^{2} }{ {(7)}^{2}  -  {( \sqrt{5} )}^{2} } = a +  b\frac{7}{11} \sqrt{5}

 \frac{(7)^{2} + 2 \times 7 \times  \sqrt{5}  +  {( \sqrt{5} )}^{2}  }{49 - 5}  -  \frac{(7)^{2} - 2 \times 7 \times  \sqrt{5}  }{49 - 5}  = a + b \frac{7}{11}  \sqrt{5}

 \frac{49 + 5 + 14 \sqrt{5} }{44}  -  \frac{49 + 5  - 14 \sqrt{5}}{44}  = a +  b \frac{7}{11}  \sqrt{5}

 \frac{54 + 14 \sqrt{5} - (54 - 14 \sqrt{5} ) }{44}  = a + b \frac{7}{11}  \sqrt{5}

 \frac{54 + 14 \sqrt{5} - 54 + 14 \sqrt{5}  }{44}  = a + b \frac{7}{11}  \sqrt{5}

 \frac{28 \sqrt{5} }{44}  = a + b \frac{7}{11} \sqrt{5}

 \frac{7}{11}  \sqrt{5}  = a + b \frac{7}{11}  \sqrt{5}

by \: comparision \: of \: both \: sides \: we \: get

a = 0 \: and \: b = 1

Answered by ItzBlinkingstar
1

Answer:

\frac{(7 + \sqrt{5} )(7 + \sqrt{5} )}{(7 - \sqrt{5})(7 + \sqrt{5} ) } - \frac{(7 - \sqrt{5} )(7 - \sqrt{5} )}{(7 + \sqrt{5} )(7 - \sqrt{5} )} = a + b\frac{7}{11} \sqrt{5} \\  \\ \frac{(7 + \sqrt{5} )^{2} }{ {(7)}^{2} - {( \sqrt{5} )}^{2} } - \frac{(7 - \sqrt{5} )^{2} }{ {(7)}^{2} - {( \sqrt{5} )}^{2} } = a + b\frac{7}{11} \sqrt{5}  \\  \\ \frac{(7)^{2} + 2 \times 7 \times \sqrt{5} + {( \sqrt{5} )}^{2} }{49 - 5} - \frac{(7)^{2} - 2 \times 7 \times \sqrt{5} }{49 - 5} = a + b \frac{7}{11} \sqrt{5}  \\  \\ \frac{49 + 5 + 14\sqrt{5} }{44} - \frac{49 + 5 - 14 \sqrt{5}}{44} = a + b \frac{7}{11} \sqrt{5} \\  \\ \frac{54 + 14 \sqrt{5} - (54 - 14 \sqrt{5} ) }{44} = a + b \frac{7}{11} \sqrt{5}  \\  \\ </p><p>\frac{54 + 14 \sqrt{5} - 54 + 14 \sqrt{5} }{44} = a + b \frac{7}{11} \sqrt{5}  \\  \frac{28 \sqrt{5} }{44} = a + b \frac{7}{11} \sqrt{5}  \\  \\ \frac{7}{11} \sqrt{5} = a + b  \\  \\ by \: comparision \: of \: both \: sides \: we \:  \\  \\ a = 0 \: and \: b = 1a=0andb=1 \\  \\

Similar questions