Math, asked by yogeshsoni50, 1 year ago

Find a and b if : √2 + √3 / 3√2 - 2√3 = a - b√6


Adisha01: sry i thought the qs is something else...

Answers

Answered by Adisha01
6
Hope this helps u...Plz mark it as brainliest...☺
Attachments:

ankitsagar: Fabulous
Xplosive: hiii
Answered by simran206
3
HLO MATE ✋✋
Simran Here !!!!

Here is Ur answer !!!!!
_____________________________⭐⭐⭐

Given \: that : \\ \\ \frac{ \sqrt{2 } + \sqrt{3} }{3 \sqrt{2} - 2 \sqrt{3} } = a - b \sqrt{6} \\ \\ We \: have \: to \: find \: 'a' \: and \: ''b \\ \\ First \: rationalize \: the \: denominator \: \\ \\ = > \frac{ \sqrt{2} + \sqrt{3} }{3 \sqrt{2} - 2 \sqrt{3} } \times \frac{ 3\sqrt{2} +2 \sqrt{3} }{3 \sqrt{2} + 2 \sqrt{3 } } \\ \\ = > \frac{( \sqrt{2} + \sqrt{3})(3 \sqrt{2} + 2 \sqrt{3} )}{(3 \sqrt{2} ) {}^{2} - (2 \sqrt{3}) {}^{2} } \\ \\ = > \frac{( \sqrt{2} + \sqrt{ 3 })(3 \sqrt{2} + 2 \sqrt{3} )}{18 - 12} \\ \\ = > \frac{\sqrt{2}(3 \sqrt{2}) + \sqrt{2} (2 \sqrt{3}) + \sqrt{3} (3 \sqrt{2}) + \sqrt{3} (2 \sqrt{3} ) }{6} \\ \\ = > \frac{3( \sqrt{2}) {}^{2} + 2 \sqrt{6} + 3 \sqrt{6} + 2( \sqrt{3} ) {}^{2} }{6} \\ \\ = > \frac{6 + 2 \sqrt{6} + 3 \sqrt{6} + 6}{6} \\ \\ = > \frac{12 + 2 \sqrt{6} + 3 \sqrt{6} }{6} \\ \\ = > \frac{12 + 5 \sqrt{6} }{6} = a - b \sqrt{6} \\ \\ = > 2 + ( \frac{5}{12} ) \sqrt{6} = a - b \sqrt{6} \\ \\ So, \\ a = 2 \\ b = \frac{ - 5}{12} ......
__________________________⭐⭐⭐
HOPE IT HELPS UH☺☺
^_^

❤BE BRAINLY❤

ankitsagar: excellent
simran206: thnks ^_^
Similar questions