find 'a' and 'b' if 2+3√3/4-5√3= a+b√3
Answers
Answered by
0
Step-by-step explanation:
Given (5 + 2√3)/(7 + 4√3) = a + b√3
Rationalizing the denominator on left-hand-side by multiplying the numerator and denominator with (7 - 4√3),
(5 + 2√3) (7 - 4√3)/(7 + 4√3) (7 - 4√3) = a + b√3
Multiply term by term the two expressions on numerator of L.H.S. and for the denominator apply the identity (m+n) (m-n) = m² - n² . We obtain,
(35 - 20√3 + 14√3 - 8.√3.√3)/[7² - (4√3)²] = a + b√3
Or, (35 - 6√3 - 8.3)/(49 - 48) = a + b√3
Or, (35 - 6√3 - 24)/1 = a + b√3
Or, 11 - 6√3 = a + b√3
Now equate the rational and irrational terms from both sides.
11 = a
Or, a = 11
- 6√3 = b√3
⇒ b = -6
Mark it as Brainlest
Similar questions