Math, asked by Anonymous, 9 months ago

Find a and b if 2-√5 / 2+3√5 = √5 a+b​

Answers

Answered by karannnn43
9

\small\star\underline\bold\red{Given-}

 \frac{(2 -  \sqrt{5)} }{(2 + 3 \sqrt{5)} }  =  \sqrt{5} a + b

\small\star\underline\bold\red{To\: find-}

  • Value of a and b.

\small\star\underline\bold\red{Solution-}

  • Rationalising the LHS , we get ,

 \frac{(2 -  \sqrt{5)} }{(2 + 3 \sqrt{5)} }  \times  \frac{(2 -  3\sqrt{5)} }{(2  -  3 \sqrt{5)} }

 =  \frac{(2 -  \sqrt{5})(2 - 3 \sqrt{5}  )}{ {(2)}^{2}  -  {(3 \sqrt{5}) }^{2} }

 =  \frac{4 - 6 \sqrt{5} - 2 \sqrt{5}  + 15 }{4 - 45}

 =  \frac{19 - 8 \sqrt{5} }{ - 41}

 =  \frac{8 \sqrt{5} }{41}  -  \frac{19}{41}

Hence,

  • a = \frac{8}{41}

  • b = \frac{-19}{41}
Answered by Anonymous
2

Answer:

Given−

\frac{(2 - \sqrt{5)} }{(2 + 3 \sqrt{5)} } = \sqrt{5} a + b

(2+3

5)

(2−

5)

=

5

a+b

\small\star\underline\bold\red{To\: find-}⋆

Tofind−

Value of a and b.

\small\star\underline\bold\red{Solution-}⋆

Solution−

Rationalising the LHS , we get ,

\frac{(2 - \sqrt{5)} }{(2 + 3 \sqrt{5)} } \times \frac{(2 - 3\sqrt{5)} }{(2 - 3 \sqrt{5)} }

(2+3

5)

(2−

5)

×

(2−3

5)

(2−3

5)

= \frac{(2 - \sqrt{5})(2 - 3 \sqrt{5} )}{ {(2)}^{2} - {(3 \sqrt{5}) }^{2} } =

(2)

2

−(3

5

)

2

(2−

5

)(2−3

5

)

= \frac{4 - 6 \sqrt{5} - 2 \sqrt{5} + 15 }{4 - 45} =

4−45

4−6

5

−2

5

+15

= \frac{19 - 8 \sqrt{5} }{ - 41} =

−41

19−8

5

= \frac{8 \sqrt{5} }{41} - \frac{19}{41} =

41

8

5

41

19

Hence,

a = \frac{8}{41}

41

8

b = \frac{-19}{41}

41

−19

Similar questions